+++ /dev/null
-This work is released into the public domain with CC0 1.0. Alternatively, it is
-licensed under the Apache License 2.0.
-
--------------------------------------------------------------------------------
-
-Creative Commons Legal Code
-
-CC0 1.0 Universal
-
- CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
- LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
- ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
- INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
- REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
- PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
- THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
- HEREUNDER.
-
-Statement of Purpose
-
-The laws of most jurisdictions throughout the world automatically confer
-exclusive Copyright and Related Rights (defined below) upon the creator
-and subsequent owner(s) (each and all, an "owner") of an original work of
-authorship and/or a database (each, a "Work").
-
-Certain owners wish to permanently relinquish those rights to a Work for
-the purpose of contributing to a commons of creative, cultural and
-scientific works ("Commons") that the public can reliably and without fear
-of later claims of infringement build upon, modify, incorporate in other
-works, reuse and redistribute as freely as possible in any form whatsoever
-and for any purposes, including without limitation commercial purposes.
-These owners may contribute to the Commons to promote the ideal of a free
-culture and the further production of creative, cultural and scientific
-works, or to gain reputation or greater distribution for their Work in
-part through the use and efforts of others.
-
-For these and/or other purposes and motivations, and without any
-expectation of additional consideration or compensation, the person
-associating CC0 with a Work (the "Affirmer"), to the extent that he or she
-is an owner of Copyright and Related Rights in the Work, voluntarily
-elects to apply CC0 to the Work and publicly distribute the Work under its
-terms, with knowledge of his or her Copyright and Related Rights in the
-Work and the meaning and intended legal effect of CC0 on those rights.
-
-1. Copyright and Related Rights. A Work made available under CC0 may be
-protected by copyright and related or neighboring rights ("Copyright and
-Related Rights"). Copyright and Related Rights include, but are not
-limited to, the following:
-
- i. the right to reproduce, adapt, distribute, perform, display,
- communicate, and translate a Work;
- ii. moral rights retained by the original author(s) and/or performer(s);
-iii. publicity and privacy rights pertaining to a person's image or
- likeness depicted in a Work;
- iv. rights protecting against unfair competition in regards to a Work,
- subject to the limitations in paragraph 4(a), below;
- v. rights protecting the extraction, dissemination, use and reuse of data
- in a Work;
- vi. database rights (such as those arising under Directive 96/9/EC of the
- European Parliament and of the Council of 11 March 1996 on the legal
- protection of databases, and under any national implementation
- thereof, including any amended or successor version of such
- directive); and
-vii. other similar, equivalent or corresponding rights throughout the
- world based on applicable law or treaty, and any national
- implementations thereof.
-
-2. Waiver. To the greatest extent permitted by, but not in contravention
-of, applicable law, Affirmer hereby overtly, fully, permanently,
-irrevocably and unconditionally waives, abandons, and surrenders all of
-Affirmer's Copyright and Related Rights and associated claims and causes
-of action, whether now known or unknown (including existing as well as
-future claims and causes of action), in the Work (i) in all territories
-worldwide, (ii) for the maximum duration provided by applicable law or
-treaty (including future time extensions), (iii) in any current or future
-medium and for any number of copies, and (iv) for any purpose whatsoever,
-including without limitation commercial, advertising or promotional
-purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
-member of the public at large and to the detriment of Affirmer's heirs and
-successors, fully intending that such Waiver shall not be subject to
-revocation, rescission, cancellation, termination, or any other legal or
-equitable action to disrupt the quiet enjoyment of the Work by the public
-as contemplated by Affirmer's express Statement of Purpose.
-
-3. Public License Fallback. Should any part of the Waiver for any reason
-be judged legally invalid or ineffective under applicable law, then the
-Waiver shall be preserved to the maximum extent permitted taking into
-account Affirmer's express Statement of Purpose. In addition, to the
-extent the Waiver is so judged Affirmer hereby grants to each affected
-person a royalty-free, non transferable, non sublicensable, non exclusive,
-irrevocable and unconditional license to exercise Affirmer's Copyright and
-Related Rights in the Work (i) in all territories worldwide, (ii) for the
-maximum duration provided by applicable law or treaty (including future
-time extensions), (iii) in any current or future medium and for any number
-of copies, and (iv) for any purpose whatsoever, including without
-limitation commercial, advertising or promotional purposes (the
-"License"). The License shall be deemed effective as of the date CC0 was
-applied by Affirmer to the Work. Should any part of the License for any
-reason be judged legally invalid or ineffective under applicable law, such
-partial invalidity or ineffectiveness shall not invalidate the remainder
-of the License, and in such case Affirmer hereby affirms that he or she
-will not (i) exercise any of his or her remaining Copyright and Related
-Rights in the Work or (ii) assert any associated claims and causes of
-action with respect to the Work, in either case contrary to Affirmer's
-express Statement of Purpose.
-
-4. Limitations and Disclaimers.
-
- a. No trademark or patent rights held by Affirmer are waived, abandoned,
- surrendered, licensed or otherwise affected by this document.
- b. Affirmer offers the Work as-is and makes no representations or
- warranties of any kind concerning the Work, express, implied,
- statutory or otherwise, including without limitation warranties of
- title, merchantability, fitness for a particular purpose, non
- infringement, or the absence of latent or other defects, accuracy, or
- the present or absence of errors, whether or not discoverable, all to
- the greatest extent permissible under applicable law.
- c. Affirmer disclaims responsibility for clearing rights of other persons
- that may apply to the Work or any use thereof, including without
- limitation any person's Copyright and Related Rights in the Work.
- Further, Affirmer disclaims responsibility for obtaining any necessary
- consents, permissions or other rights required for any use of the
- Work.
- d. Affirmer understands and acknowledges that Creative Commons is not a
- party to this document and has no duty or obligation with respect to
- this CC0 or use of the Work.
-
--------------------------------------------------------------------------------
-
- Apache License
- Version 2.0, January 2004
- http://www.apache.org/licenses/
-
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
-
- 1. Definitions.
-
- "License" shall mean the terms and conditions for use, reproduction,
- and distribution as defined by Sections 1 through 9 of this document.
-
- "Licensor" shall mean the copyright owner or entity authorized by
- the copyright owner that is granting the License.
-
- "Legal Entity" shall mean the union of the acting entity and all
- other entities that control, are controlled by, or are under common
- control with that entity. For the purposes of this definition,
- "control" means (i) the power, direct or indirect, to cause the
- direction or management of such entity, whether by contract or
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
- outstanding shares, or (iii) beneficial ownership of such entity.
-
- "You" (or "Your") shall mean an individual or Legal Entity
- exercising permissions granted by this License.
-
- "Source" form shall mean the preferred form for making modifications,
- including but not limited to software source code, documentation
- source, and configuration files.
-
- "Object" form shall mean any form resulting from mechanical
- transformation or translation of a Source form, including but
- not limited to compiled object code, generated documentation,
- and conversions to other media types.
-
- "Work" shall mean the work of authorship, whether in Source or
- Object form, made available under the License, as indicated by a
- copyright notice that is included in or attached to the work
- (an example is provided in the Appendix below).
-
- "Derivative Works" shall mean any work, whether in Source or Object
- form, that is based on (or derived from) the Work and for which the
- editorial revisions, annotations, elaborations, or other modifications
- represent, as a whole, an original work of authorship. For the purposes
- of this License, Derivative Works shall not include works that remain
- separable from, or merely link (or bind by name) to the interfaces of,
- the Work and Derivative Works thereof.
-
- "Contribution" shall mean any work of authorship, including
- the original version of the Work and any modifications or additions
- to that Work or Derivative Works thereof, that is intentionally
- submitted to Licensor for inclusion in the Work by the copyright owner
- or by an individual or Legal Entity authorized to submit on behalf of
- the copyright owner. For the purposes of this definition, "submitted"
- means any form of electronic, verbal, or written communication sent
- to the Licensor or its representatives, including but not limited to
- communication on electronic mailing lists, source code control systems,
- and issue tracking systems that are managed by, or on behalf of, the
- Licensor for the purpose of discussing and improving the Work, but
- excluding communication that is conspicuously marked or otherwise
- designated in writing by the copyright owner as "Not a Contribution."
-
- "Contributor" shall mean Licensor and any individual or Legal Entity
- on behalf of whom a Contribution has been received by Licensor and
- subsequently incorporated within the Work.
-
- 2. Grant of Copyright License. Subject to the terms and conditions of
- this License, each Contributor hereby grants to You a perpetual,
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
- copyright license to reproduce, prepare Derivative Works of,
- publicly display, publicly perform, sublicense, and distribute the
- Work and such Derivative Works in Source or Object form.
-
- 3. Grant of Patent License. Subject to the terms and conditions of
- this License, each Contributor hereby grants to You a perpetual,
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
- (except as stated in this section) patent license to make, have made,
- use, offer to sell, sell, import, and otherwise transfer the Work,
- where such license applies only to those patent claims licensable
- by such Contributor that are necessarily infringed by their
- Contribution(s) alone or by combination of their Contribution(s)
- with the Work to which such Contribution(s) was submitted. If You
- institute patent litigation against any entity (including a
- cross-claim or counterclaim in a lawsuit) alleging that the Work
- or a Contribution incorporated within the Work constitutes direct
- or contributory patent infringement, then any patent licenses
- granted to You under this License for that Work shall terminate
- as of the date such litigation is filed.
-
- 4. Redistribution. You may reproduce and distribute copies of the
- Work or Derivative Works thereof in any medium, with or without
- modifications, and in Source or Object form, provided that You
- meet the following conditions:
-
- (a) You must give any other recipients of the Work or
- Derivative Works a copy of this License; and
-
- (b) You must cause any modified files to carry prominent notices
- stating that You changed the files; and
-
- (c) You must retain, in the Source form of any Derivative Works
- that You distribute, all copyright, patent, trademark, and
- attribution notices from the Source form of the Work,
- excluding those notices that do not pertain to any part of
- the Derivative Works; and
-
- (d) If the Work includes a "NOTICE" text file as part of its
- distribution, then any Derivative Works that You distribute must
- include a readable copy of the attribution notices contained
- within such NOTICE file, excluding those notices that do not
- pertain to any part of the Derivative Works, in at least one
- of the following places: within a NOTICE text file distributed
- as part of the Derivative Works; within the Source form or
- documentation, if provided along with the Derivative Works; or,
- within a display generated by the Derivative Works, if and
- wherever such third-party notices normally appear. The contents
- of the NOTICE file are for informational purposes only and
- do not modify the License. You may add Your own attribution
- notices within Derivative Works that You distribute, alongside
- or as an addendum to the NOTICE text from the Work, provided
- that such additional attribution notices cannot be construed
- as modifying the License.
-
- You may add Your own copyright statement to Your modifications and
- may provide additional or different license terms and conditions
- for use, reproduction, or distribution of Your modifications, or
- for any such Derivative Works as a whole, provided Your use,
- reproduction, and distribution of the Work otherwise complies with
- the conditions stated in this License.
-
- 5. Submission of Contributions. Unless You explicitly state otherwise,
- any Contribution intentionally submitted for inclusion in the Work
- by You to the Licensor shall be under the terms and conditions of
- this License, without any additional terms or conditions.
- Notwithstanding the above, nothing herein shall supersede or modify
- the terms of any separate license agreement you may have executed
- with Licensor regarding such Contributions.
-
- 6. Trademarks. This License does not grant permission to use the trade
- names, trademarks, service marks, or product names of the Licensor,
- except as required for reasonable and customary use in describing the
- origin of the Work and reproducing the content of the NOTICE file.
-
- 7. Disclaimer of Warranty. Unless required by applicable law or
- agreed to in writing, Licensor provides the Work (and each
- Contributor provides its Contributions) on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
- implied, including, without limitation, any warranties or conditions
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
- PARTICULAR PURPOSE. You are solely responsible for determining the
- appropriateness of using or redistributing the Work and assume any
- risks associated with Your exercise of permissions under this License.
-
- 8. Limitation of Liability. In no event and under no legal theory,
- whether in tort (including negligence), contract, or otherwise,
- unless required by applicable law (such as deliberate and grossly
- negligent acts) or agreed to in writing, shall any Contributor be
- liable to You for damages, including any direct, indirect, special,
- incidental, or consequential damages of any character arising as a
- result of this License or out of the use or inability to use the
- Work (including but not limited to damages for loss of goodwill,
- work stoppage, computer failure or malfunction, or any and all
- other commercial damages or losses), even if such Contributor
- has been advised of the possibility of such damages.
-
- 9. Accepting Warranty or Additional Liability. While redistributing
- the Work or Derivative Works thereof, You may choose to offer,
- and charge a fee for, acceptance of support, warranty, indemnity,
- or other liability obligations and/or rights consistent with this
- License. However, in accepting such obligations, You may act only
- on Your own behalf and on Your sole responsibility, not on behalf
- of any other Contributor, and only if You agree to indemnify,
- defend, and hold each Contributor harmless for any liability
- incurred by, or claims asserted against, such Contributor by reason
- of your accepting any such warranty or additional liability.
-
- END OF TERMS AND CONDITIONS
-
- APPENDIX: How to apply the Apache License to your work.
-
- To apply the Apache License to your work, attach the following
- boilerplate notice, with the fields enclosed by brackets "[]"
- replaced with your own identifying information. (Don't include
- the brackets!) The text should be enclosed in the appropriate
- comment syntax for the file format. We also recommend that a
- file or class name and description of purpose be included on the
- same "printed page" as the copyright notice for easier
- identification within third-party archives.
-
- Copyright 2019 Jack O'Connor and Samuel Neves
-
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
\ No newline at end of file
+++ /dev/null
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[inline]
-fn optimizer_hide(mut value: u8) -> u8 {
- // SAFETY: the input value is passed unchanged to the output, the inline assembly does nothing.
- unsafe {
- core::arch::asm!("/* {0} */", inout(reg_byte) value, options(pure, nomem, nostack, preserves_flags));
- value
- }
-}
-
-#[cfg(any(
- target_arch = "arm",
- target_arch = "aarch64",
- target_arch = "riscv32",
- target_arch = "riscv64"
-))]
-#[allow(asm_sub_register)]
-#[inline]
-fn optimizer_hide(mut value: u8) -> u8 {
- // SAFETY: the input value is passed unchanged to the output, the inline assembly does nothing.
- unsafe {
- core::arch::asm!("/* {0} */", inout(reg) value, options(pure, nomem, nostack, preserves_flags));
- value
- }
-}
-
-#[cfg(not(any(
- target_arch = "x86",
- target_arch = "x86_64",
- target_arch = "arm",
- target_arch = "aarch64",
- target_arch = "riscv32",
- target_arch = "riscv64"
-)))]
-#[inline(never)] // This function is non-inline to prevent the optimizer from looking inside it.
-fn optimizer_hide(value: u8) -> u8 {
- // SAFETY: the result of casting a reference to a pointer is valid; the type is Copy.
- unsafe { core::ptr::read_volatile(&value) }
-}
-
-#[inline]
-fn constant_time_ne(a: &[u8], b: &[u8]) -> u8 {
- assert!(a.len() == b.len());
-
- // These useless slices make the optimizer elide the bounds checks.
- // See the comment in clone_from_slice() added on Rust commit 6a7bc47.
- let len = a.len();
- let a = &a[..len];
- let b = &b[..len];
-
- let mut tmp = 0;
- for i in 0..len {
- tmp |= a[i] ^ b[i];
- }
-
- // The compare with 0 must happen outside this function.
- optimizer_hide(tmp)
-}
-
-/// Compares two equal-sized byte strings in constant time.
-///
-/// # Examples
-///
-/// ```
-/// use narcissus_core::blake3::constant_time_eq::constant_time_eq;
-///
-/// assert!(constant_time_eq(b"foo", b"foo"));
-/// assert!(!constant_time_eq(b"foo", b"bar"));
-/// assert!(!constant_time_eq(b"bar", b"baz"));
-/// # assert!(constant_time_eq(b"", b""));
-///
-/// // Not equal-sized, so won't take constant time.
-/// assert!(!constant_time_eq(b"foo", b""));
-/// assert!(!constant_time_eq(b"foo", b"quux"));
-/// ```
-pub fn constant_time_eq(a: &[u8], b: &[u8]) -> bool {
- a.len() == b.len() && constant_time_ne(a, b) == 0
-}
-
-// Fixed-size array variant.
-
-#[inline]
-fn constant_time_ne_n<const N: usize>(a: &[u8; N], b: &[u8; N]) -> u8 {
- let mut tmp = 0;
- for i in 0..N {
- tmp |= a[i] ^ b[i];
- }
-
- // The compare with 0 must happen outside this function.
- optimizer_hide(tmp)
-}
-
-/// Compares two fixed-size byte strings in constant time.
-///
-/// # Examples
-///
-/// ```
-/// use narcissus_core::blake3::constant_time_eq::constant_time_eq_n;
-///
-/// assert!(constant_time_eq_n(&[3; 20], &[3; 20]));
-/// assert!(!constant_time_eq_n(&[3; 20], &[7; 20]));
-/// ```
-#[inline]
-pub fn constant_time_eq_n<const N: usize>(a: &[u8; N], b: &[u8; N]) -> bool {
- constant_time_ne_n(a, b) == 0
-}
-
-// Fixed-size variants for the most common sizes.
-
-/// Compares two 128-bit byte strings in constant time.
-///
-/// # Examples
-///
-/// ```
-/// use narcissus_core::blake3::constant_time_eq::constant_time_eq_16;
-///
-/// assert!(constant_time_eq_16(&[3; 16], &[3; 16]));
-/// assert!(!constant_time_eq_16(&[3; 16], &[7; 16]));
-/// ```
-#[inline]
-pub fn constant_time_eq_16(a: &[u8; 16], b: &[u8; 16]) -> bool {
- constant_time_eq_n(a, b)
-}
-
-/// Compares two 256-bit byte strings in constant time.
-///
-/// # Examples
-///
-/// ```
-/// use narcissus_core::blake3::constant_time_eq::constant_time_eq_32;
-///
-/// assert!(constant_time_eq_32(&[3; 32], &[3; 32]));
-/// assert!(!constant_time_eq_32(&[3; 32], &[7; 32]));
-/// ```
-#[inline]
-pub fn constant_time_eq_32(a: &[u8; 32], b: &[u8; 32]) -> bool {
- constant_time_eq_n(a, b)
-}
-
-/// Compares two 512-bit byte strings in constant time.
-///
-/// # Examples
-///
-/// ```
-/// use narcissus_core::blake3::constant_time_eq::constant_time_eq_64;
-///
-/// assert!(constant_time_eq_64(&[3; 64], &[3; 64]));
-/// assert!(!constant_time_eq_64(&[3; 64], &[7; 64]));
-/// ```
-#[inline]
-pub fn constant_time_eq_64(a: &[u8; 64], b: &[u8; 64]) -> bool {
- constant_time_eq_n(a, b)
-}
+++ /dev/null
-//! This undocumented and unstable module is for use cases like the `bao` crate,
-//! which need to traverse the BLAKE3 Merkle tree and work with chunk and parent
-//! chaining values directly. There might be breaking changes to this module
-//! between patch versions.
-//!
-//! We could stabilize something like this module in the future. If you have a
-//! use case for it, please let us know by filing a GitHub issue.
-
-pub const BLOCK_LEN: usize = 64;
-pub const CHUNK_LEN: usize = 1024;
-
-#[derive(Clone, Debug)]
-pub struct ChunkState(super::ChunkState);
-
-impl ChunkState {
- // Currently this type only supports the regular hash mode. If an
- // incremental user needs keyed_hash or derive_key, we can add that.
- pub fn new(chunk_counter: u64) -> Self {
- Self(super::ChunkState::new(
- super::IV,
- chunk_counter,
- 0,
- super::platform::Platform::detect(),
- ))
- }
-
- #[inline]
- pub fn len(&self) -> usize {
- self.0.len()
- }
-
- #[inline]
- pub fn update(&mut self, input: &[u8]) -> &mut Self {
- self.0.update(input);
- self
- }
-
- pub fn finalize(&self, is_root: bool) -> super::Hash {
- let output = self.0.output();
- if is_root {
- output.root_hash()
- } else {
- output.chaining_value().into()
- }
- }
-}
-
-// As above, this currently assumes the regular hash mode. If an incremental
-// user needs keyed_hash or derive_key, we can add that.
-pub fn parent_cv(
- left_child: &super::Hash,
- right_child: &super::Hash,
- is_root: bool,
-) -> super::Hash {
- let output = super::parent_node_output(
- left_child.as_bytes(),
- right_child.as_bytes(),
- super::IV,
- 0,
- super::platform::Platform::detect(),
- );
- if is_root {
- output.root_hash()
- } else {
- output.chaining_value().into()
- }
-}
-
-#[cfg(test)]
-mod test {
- use crate::blake3::{hash, Hasher};
-
- use super::*;
-
- #[test]
- fn test_chunk() {
- assert_eq!(
- hash(b"foo"),
- ChunkState::new(0).update(b"foo").finalize(true)
- );
- }
-
- #[test]
- fn test_parents() {
- let mut hasher = Hasher::new();
- let mut buf = [0; super::CHUNK_LEN];
-
- buf[0] = 'a' as u8;
- hasher.update(&buf);
- let chunk0_cv = ChunkState::new(0).update(&buf).finalize(false);
-
- buf[0] = 'b' as u8;
- hasher.update(&buf);
- let chunk1_cv = ChunkState::new(1).update(&buf).finalize(false);
-
- hasher.update(b"c");
- let chunk2_cv = ChunkState::new(2).update(b"c").finalize(false);
-
- let parent = parent_cv(&chunk0_cv, &chunk1_cv, false);
- let root = parent_cv(&parent, &chunk2_cv, true);
- assert_eq!(hasher.finalize(), root);
- }
-}
+++ /dev/null
-//! The multi-threading abstractions used by `Hasher::update_with_join`.
-//!
-//! Different implementations of the `Join` trait determine whether
-//! `Hasher::update_with_join` performs multi-threading on sufficiently large
-//! inputs. The `SerialJoin` implementation is single-threaded, and the
-//! `RayonJoin` implementation (gated by the `rayon` feature) is multi-threaded.
-//! Interfaces other than `Hasher::update_with_join`, like [`hash`](crate::hash)
-//! and [`Hasher::update`](crate::Hasher::update), always use `SerialJoin`
-//! internally.
-//!
-//! The `Join` trait is an almost exact copy of the [`rayon::join`] API, and
-//! `RayonJoin` is the only non-trivial implementation. Previously this trait
-//! was public, but currently it's been re-privatized, as it's both 1) of no
-//! value to most callers and 2) a pretty big implementation detail to commit
-//! to.
-//!
-//! [`rayon::join`]: https://docs.rs/rayon/1.3.0/rayon/fn.join.html
-
-/// The trait that abstracts over single-threaded and multi-threaded recursion.
-///
-/// See the [`join` module docs](index.html) for more details.
-pub trait Join {
- fn join<A, B, RA, RB>(oper_a: A, oper_b: B) -> (RA, RB)
- where
- A: FnOnce() -> RA + Send,
- B: FnOnce() -> RB + Send,
- RA: Send,
- RB: Send;
-}
-
-/// The trivial, serial implementation of `Join`. The left and right sides are
-/// executed one after the other, on the calling thread. The standalone hashing
-/// functions and the `Hasher::update` method use this implementation
-/// internally.
-///
-/// See the [`join` module docs](index.html) for more details.
-pub enum SerialJoin {}
-
-impl Join for SerialJoin {
- #[inline]
- fn join<A, B, RA, RB>(oper_a: A, oper_b: B) -> (RA, RB)
- where
- A: FnOnce() -> RA + Send,
- B: FnOnce() -> RB + Send,
- RA: Send,
- RB: Send,
- {
- (oper_a(), oper_b())
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
-
- #[test]
- fn test_serial_join() {
- let oper_a = || 1 + 1;
- let oper_b = || 2 + 2;
- assert_eq!((2, 4), SerialJoin::join(oper_a, oper_b));
- }
-}
+++ /dev/null
-//! The official Rust implementation of the [BLAKE3] cryptographic hash
-//! function.
-//!
-//! # Examples
-//!
-//! ```
-//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
-//! // Hash an input all at once.
-//! let hash1 = narcissus_core::blake3::hash(b"foobarbaz");
-//!
-//! // Hash an input incrementally.
-//! let mut hasher = narcissus_core::blake3::Hasher::new();
-//! hasher.update(b"foo");
-//! hasher.update(b"bar");
-//! hasher.update(b"baz");
-//! let hash2 = hasher.finalize();
-//! assert_eq!(hash1, hash2);
-//! # Ok(())
-//! # }
-//! ```
-//!
-//! [BLAKE3]: https://blake3.io
-//! [docs.rs]: https://docs.rs/
-//! [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
-//! [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html
-
-#[cfg(test)]
-pub(crate) mod test;
-
-#[cfg(test)]
-pub(crate) mod reference_impl;
-
-// The guts module is for incremental use cases like the `bao` crate that need
-// to explicitly compute chunk and parent chaining values. It is semi-stable
-// and likely to keep working, but largely undocumented and not intended for
-// widespread use.
-#[doc(hidden)]
-pub mod guts;
-
-/// Undocumented and unstable, for benchmarks only.
-#[doc(hidden)]
-pub mod platform;
-
-mod portable;
-
-// Platform-specific implementations of the compression function. These
-// BLAKE3-specific cfg flags are set in build.rs.
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[path = "rust_avx2.rs"]
-mod avx2;
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[path = "rust_sse2.rs"]
-mod sse2;
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[path = "rust_sse41.rs"]
-mod sse41;
-
-mod join;
-
-use core::cmp;
-use core::fmt;
-use platform::{Platform, MAX_SIMD_DEGREE, MAX_SIMD_DEGREE_OR_2};
-
-/// The number of bytes in a [`Hash`](struct.Hash.html), 32.
-pub const OUT_LEN: usize = 32;
-
-/// The number of bytes in a key, 32.
-pub const KEY_LEN: usize = 32;
-
-const MAX_DEPTH: usize = 54; // 2^54 * CHUNK_LEN = 2^64
-use guts::{BLOCK_LEN, CHUNK_LEN};
-
-pub mod constant_time_eq;
-
-use crate::slice::array_chunks;
-use crate::slice::split_array_ref;
-use crate::FixedVec;
-
-// While iterating the compression function within a chunk, the CV is
-// represented as words, to avoid doing two extra endianness conversions for
-// each compression in the portable implementation. But the hash_many interface
-// needs to hash both input bytes and parent nodes, so its better for its
-// output CVs to be represented as bytes.
-type CVWords = [u32; 8];
-type CVBytes = [u8; 32]; // little-endian
-
-const IV: &CVWords = &[
- 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
-];
-
-const MSG_SCHEDULE: [[usize; 16]; 7] = [
- [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
- [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8],
- [3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1],
- [10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6],
- [12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4],
- [9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7],
- [11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13],
-];
-
-// These are the internal flags that we use to domain separate root/non-root,
-// chunk/parent, and chunk beginning/middle/end. These get set at the high end
-// of the block flags word in the compression function, so their values start
-// high and go down.
-const CHUNK_START: u8 = 1 << 0;
-const CHUNK_END: u8 = 1 << 1;
-const PARENT: u8 = 1 << 2;
-const ROOT: u8 = 1 << 3;
-const KEYED_HASH: u8 = 1 << 4;
-const DERIVE_KEY_CONTEXT: u8 = 1 << 5;
-const DERIVE_KEY_MATERIAL: u8 = 1 << 6;
-
-#[inline]
-fn counter_low(counter: u64) -> u32 {
- counter as u32
-}
-
-#[inline]
-fn counter_high(counter: u64) -> u32 {
- (counter >> 32) as u32
-}
-
-/// An output of the default size, 32 bytes, which provides constant-time
-/// equality checking.
-///
-/// `Hash` implements [`From`] and [`Into`] for `[u8; 32]`, and it provides an
-/// explicit [`as_bytes`] method returning `&[u8; 32]`. However, byte arrays
-/// and slices don't provide constant-time equality checking, which is often a
-/// security requirement in software that handles private data. `Hash` doesn't
-/// implement [`Deref`] or [`AsRef`], to avoid situations where a type
-/// conversion happens implicitly and the constant-time property is
-/// accidentally lost.
-///
-/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html
-/// [`Into`]: https://doc.rust-lang.org/std/convert/trait.Into.html
-/// [`as_bytes`]: #method.as_bytes
-/// [`Deref`]: https://doc.rust-lang.org/stable/std/ops/trait.Deref.html
-/// [`AsRef`]: https://doc.rust-lang.org/std/convert/trait.AsRef.html
-#[derive(Clone, Copy)]
-pub struct Hash([u8; OUT_LEN]);
-
-impl Hash {
- /// The raw bytes of the `Hash`. Note that byte arrays don't provide
- /// constant-time equality checking, so if you need to compare hashes,
- /// prefer the `Hash` type.
- #[inline]
- pub fn as_bytes(&self) -> &[u8; OUT_LEN] {
- &self.0
- }
-}
-
-impl From<[u8; OUT_LEN]> for Hash {
- #[inline]
- fn from(bytes: [u8; OUT_LEN]) -> Self {
- Self(bytes)
- }
-}
-
-impl From<Hash> for [u8; OUT_LEN] {
- #[inline]
- fn from(hash: Hash) -> Self {
- hash.0
- }
-}
-
-/// This implementation is constant-time.
-impl PartialEq for Hash {
- #[inline]
- fn eq(&self, other: &Hash) -> bool {
- constant_time_eq::constant_time_eq_32(&self.0, &other.0)
- }
-}
-
-impl std::hash::Hash for Hash {
- fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
- self.0.hash(state);
- }
-}
-
-/// This implementation is constant-time.
-impl PartialEq<[u8; OUT_LEN]> for Hash {
- #[inline]
- fn eq(&self, other: &[u8; OUT_LEN]) -> bool {
- constant_time_eq::constant_time_eq_32(&self.0, other)
- }
-}
-
-/// This implementation is constant-time if the target is 32 bytes long.
-impl PartialEq<[u8]> for Hash {
- #[inline]
- fn eq(&self, other: &[u8]) -> bool {
- constant_time_eq::constant_time_eq(&self.0, other)
- }
-}
-
-impl Eq for Hash {}
-
-impl fmt::Debug for Hash {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_tuple("Hash").field(&self.0).finish()
- }
-}
-
-// Each chunk or parent node can produce either a 32-byte chaining value or, by
-// setting the ROOT flag, any number of final output bytes. The Output struct
-// captures the state just prior to choosing between those two possibilities.
-#[derive(Clone)]
-struct Output {
- input_chaining_value: CVWords,
- block: [u8; 64],
- block_len: u8,
- counter: u64,
- flags: u8,
- platform: Platform,
-}
-
-impl Output {
- fn chaining_value(&self) -> CVBytes {
- let mut cv = self.input_chaining_value;
- self.platform.compress_in_place(
- &mut cv,
- &self.block,
- self.block_len,
- self.counter,
- self.flags,
- );
- platform::le_bytes_from_words_32(&cv)
- }
-
- fn root_hash(&self) -> Hash {
- debug_assert_eq!(self.counter, 0);
- let mut cv = self.input_chaining_value;
- self.platform
- .compress_in_place(&mut cv, &self.block, self.block_len, 0, self.flags | ROOT);
- Hash(platform::le_bytes_from_words_32(&cv))
- }
-
- fn root_output_block(&self) -> [u8; 2 * OUT_LEN] {
- self.platform.compress_xof(
- &self.input_chaining_value,
- &self.block,
- self.block_len,
- self.counter,
- self.flags | ROOT,
- )
- }
-}
-
-#[derive(Clone)]
-struct ChunkState {
- cv: CVWords,
- chunk_counter: u64,
- buf: [u8; BLOCK_LEN],
- buf_len: u8,
- blocks_compressed: u8,
- flags: u8,
- platform: Platform,
-}
-
-impl ChunkState {
- fn new(key: &CVWords, chunk_counter: u64, flags: u8, platform: Platform) -> Self {
- Self {
- cv: *key,
- chunk_counter,
- buf: [0; BLOCK_LEN],
- buf_len: 0,
- blocks_compressed: 0,
- flags,
- platform,
- }
- }
-
- fn len(&self) -> usize {
- BLOCK_LEN * self.blocks_compressed as usize + self.buf_len as usize
- }
-
- fn fill_buf(&mut self, input: &mut &[u8]) {
- let want = BLOCK_LEN - self.buf_len as usize;
- let take = cmp::min(want, input.len());
- self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]);
- self.buf_len += take as u8;
- *input = &input[take..];
- }
-
- fn start_flag(&self) -> u8 {
- if self.blocks_compressed == 0 {
- CHUNK_START
- } else {
- 0
- }
- }
-
- // Try to avoid buffering as much as possible, by compressing directly from
- // the input slice when full blocks are available.
- fn update(&mut self, mut input: &[u8]) -> &mut Self {
- if self.buf_len > 0 {
- self.fill_buf(&mut input);
- if !input.is_empty() {
- debug_assert_eq!(self.buf_len as usize, BLOCK_LEN);
- let block_flags = self.flags | self.start_flag(); // borrowck
- self.platform.compress_in_place(
- &mut self.cv,
- &self.buf,
- BLOCK_LEN as u8,
- self.chunk_counter,
- block_flags,
- );
- self.buf_len = 0;
- self.buf = [0; BLOCK_LEN];
- self.blocks_compressed += 1;
- }
- }
-
- while input.len() > BLOCK_LEN {
- debug_assert_eq!(self.buf_len, 0);
- let block_flags = self.flags | self.start_flag(); // borrowck
- let (block, rem) = split_array_ref(input);
- self.platform.compress_in_place(
- &mut self.cv,
- block,
- BLOCK_LEN as u8,
- self.chunk_counter,
- block_flags,
- );
- self.blocks_compressed += 1;
- input = rem;
- }
-
- self.fill_buf(&mut input);
- debug_assert!(input.is_empty());
- debug_assert!(self.len() <= CHUNK_LEN);
- self
- }
-
- fn output(&self) -> Output {
- let block_flags = self.flags | self.start_flag() | CHUNK_END;
- Output {
- input_chaining_value: self.cv,
- block: self.buf,
- block_len: self.buf_len,
- counter: self.chunk_counter,
- flags: block_flags,
- platform: self.platform,
- }
- }
-}
-
-// Don't derive(Debug), because the state may be secret.
-impl fmt::Debug for ChunkState {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_struct("ChunkState")
- .field("len", &self.len())
- .field("chunk_counter", &self.chunk_counter)
- .field("flags", &self.flags)
- .field("platform", &self.platform)
- .finish()
- }
-}
-
-// IMPLEMENTATION NOTE
-// ===================
-// The recursive function compress_subtree_wide(), implemented below, is the
-// basis of high-performance BLAKE3. We use it both for all-at-once hashing,
-// and for the incremental input with Hasher (though we have to be careful with
-// subtree boundaries in the incremental case). compress_subtree_wide() applies
-// several optimizations at the same time:
-// - Multithreading with Rayon.
-// - Parallel chunk hashing with SIMD.
-// - Parallel parent hashing with SIMD. Note that while SIMD chunk hashing
-// maxes out at MAX_SIMD_DEGREE*CHUNK_LEN, parallel parent hashing continues
-// to benefit from larger inputs, because more levels of the tree benefit can
-// use full-width SIMD vectors for parent hashing. Without parallel parent
-// hashing, we lose about 10% of overall throughput on AVX2 and AVX-512.
-
-/// Undocumented and unstable, for benchmarks only.
-#[doc(hidden)]
-#[derive(Clone, Copy)]
-pub enum IncrementCounter {
- Yes,
- No,
-}
-
-impl IncrementCounter {
- #[inline]
- fn yes(&self) -> bool {
- match self {
- IncrementCounter::Yes => true,
- IncrementCounter::No => false,
- }
- }
-}
-
-// The largest power of two less than or equal to `n`, used for left_len()
-// immediately below, and also directly in Hasher::update().
-fn largest_power_of_two_leq(n: usize) -> usize {
- ((n / 2) + 1).next_power_of_two()
-}
-
-// Given some input larger than one chunk, return the number of bytes that
-// should go in the left subtree. This is the largest power-of-2 number of
-// chunks that leaves at least 1 byte for the right subtree.
-fn left_len(content_len: usize) -> usize {
- debug_assert!(content_len > CHUNK_LEN);
- // Subtract 1 to reserve at least one byte for the right side.
- let full_chunks = (content_len - 1) / CHUNK_LEN;
- largest_power_of_two_leq(full_chunks) * CHUNK_LEN
-}
-
-// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
-// on a single thread. Write out the chunk chaining values and return the
-// number of chunks hashed. These chunks are never the root and never empty;
-// those cases use a different codepath.
-fn compress_chunks_parallel(
- input: &[u8],
- key: &CVWords,
- chunk_counter: u64,
- flags: u8,
- platform: Platform,
- out: &mut [u8],
-) -> usize {
- debug_assert!(!input.is_empty(), "empty chunks below the root");
- debug_assert!(input.len() <= MAX_SIMD_DEGREE * CHUNK_LEN);
-
- let mut chunks_exact = array_chunks(input);
- let mut chunks_array = FixedVec::<&[u8; CHUNK_LEN], MAX_SIMD_DEGREE>::new();
- for chunk in &mut chunks_exact {
- chunks_array.push(chunk);
- }
- platform.hash_many(
- &chunks_array,
- key,
- chunk_counter,
- IncrementCounter::Yes,
- flags,
- CHUNK_START,
- CHUNK_END,
- out,
- );
-
- // Hash the remaining partial chunk, if there is one. Note that the empty
- // chunk (meaning the empty message) is a different codepath.
- let chunks_so_far = chunks_array.len();
- if !chunks_exact.remainder().is_empty() {
- let counter = chunk_counter + chunks_so_far as u64;
- let mut chunk_state = ChunkState::new(key, counter, flags, platform);
- chunk_state.update(chunks_exact.remainder());
- out[chunks_so_far * OUT_LEN..chunks_so_far * OUT_LEN + OUT_LEN]
- .copy_from_slice(&chunk_state.output().chaining_value());
- chunks_so_far + 1
- } else {
- chunks_so_far
- }
-}
-
-// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
-// on a single thread. Write out the parent chaining values and return the
-// number of parents hashed. (If there's an odd input chaining value left over,
-// return it as an additional output.) These parents are never the root and
-// never empty; those cases use a different codepath.
-fn compress_parents_parallel(
- child_chaining_values: &[u8],
- key: &CVWords,
- flags: u8,
- platform: Platform,
- out: &mut [u8],
-) -> usize {
- debug_assert_eq!(child_chaining_values.len() % OUT_LEN, 0, "wacky hash bytes");
- let num_children = child_chaining_values.len() / OUT_LEN;
- debug_assert!(num_children >= 2, "not enough children");
- debug_assert!(num_children <= 2 * MAX_SIMD_DEGREE_OR_2, "too many");
-
- let mut parents_exact = array_chunks(child_chaining_values);
- // Use MAX_SIMD_DEGREE_OR_2 rather than MAX_SIMD_DEGREE here, because of
- // the requirements of compress_subtree_wide().
- let mut parents_array = FixedVec::<&[u8; BLOCK_LEN], MAX_SIMD_DEGREE_OR_2>::new();
- for parent in &mut parents_exact {
- parents_array.push(parent);
- }
- platform.hash_many(
- &parents_array,
- key,
- 0, // Parents always use counter 0.
- IncrementCounter::No,
- flags | PARENT,
- 0, // Parents have no start flags.
- 0, // Parents have no end flags.
- out,
- );
-
- // If there's an odd child left over, it becomes an output.
- let parents_so_far = parents_array.len();
- if !parents_exact.remainder().is_empty() {
- out[parents_so_far * OUT_LEN..][..OUT_LEN].copy_from_slice(parents_exact.remainder());
- parents_so_far + 1
- } else {
- parents_so_far
- }
-}
-
-// The wide helper function returns (writes out) an array of chaining values
-// and returns the length of that array. The number of chaining values returned
-// is the dynamically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
-// if the input is shorter than that many chunks. The reason for maintaining a
-// wide array of chaining values going back up the tree, is to allow the
-// implementation to hash as many parents in parallel as possible.
-//
-// As a special case when the SIMD degree is 1, this function will still return
-// at least 2 outputs. This guarantees that this function doesn't perform the
-// root compression. (If it did, it would use the wrong flags, and also we
-// wouldn't be able to implement exendable output.) Note that this function is
-// not used when the whole input is only 1 chunk long; that's a different
-// codepath.
-//
-// Why not just have the caller split the input on the first update(), instead
-// of implementing this special rule? Because we don't want to limit SIMD or
-// multithreading parallelism for that update().
-fn compress_subtree_wide<J: join::Join>(
- input: &[u8],
- key: &CVWords,
- chunk_counter: u64,
- flags: u8,
- platform: Platform,
- out: &mut [u8],
-) -> usize {
- // Note that the single chunk case does *not* bump the SIMD degree up to 2
- // when it is 1. This allows Rayon the option of multithreading even the
- // 2-chunk case, which can help performance on smaller platforms.
- if input.len() <= platform.simd_degree() * CHUNK_LEN {
- return compress_chunks_parallel(input, key, chunk_counter, flags, platform, out);
- }
-
- // With more than simd_degree chunks, we need to recurse. Start by dividing
- // the input into left and right subtrees. (Note that this is only optimal
- // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
- // of 3 or something, we'll need a more complicated strategy.)
- debug_assert_eq!(platform.simd_degree().count_ones(), 1, "power of 2");
- let (left, right) = input.split_at(left_len(input.len()));
- let right_chunk_counter = chunk_counter + (left.len() / CHUNK_LEN) as u64;
-
- // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
- // account for the special case of returning 2 outputs when the SIMD degree
- // is 1.
- let mut cv_array = [0; 2 * MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
- let degree = if left.len() == CHUNK_LEN {
- // The "simd_degree=1 and we're at the leaf nodes" case.
- debug_assert_eq!(platform.simd_degree(), 1);
- 1
- } else {
- cmp::max(platform.simd_degree(), 2)
- };
- let (left_out, right_out) = cv_array.split_at_mut(degree * OUT_LEN);
-
- let (left_n, right_n) = J::join(
- || compress_subtree_wide::<J>(left, key, chunk_counter, flags, platform, left_out),
- || compress_subtree_wide::<J>(right, key, right_chunk_counter, flags, platform, right_out),
- );
-
- // The special case again. If simd_degree=1, then we'll have left_n=1 and
- // right_n=1. Rather than compressing them into a single output, return
- // them directly, to make sure we always have at least two outputs.
- debug_assert_eq!(left_n, degree);
- debug_assert!(right_n >= 1 && right_n <= left_n);
- if left_n == 1 {
- out[..2 * OUT_LEN].copy_from_slice(&cv_array[..2 * OUT_LEN]);
- return 2;
- }
-
- // Otherwise, do one layer of parent node compression.
- let num_children = left_n + right_n;
- compress_parents_parallel(
- &cv_array[..num_children * OUT_LEN],
- key,
- flags,
- platform,
- out,
- )
-}
-
-// Hash a subtree with compress_subtree_wide(), and then condense the resulting
-// list of chaining values down to a single parent node. Don't compress that
-// last parent node, however. Instead, return its message bytes (the
-// concatenated chaining values of its children). This is necessary when the
-// first call to update() supplies a complete subtree, because the topmost
-// parent node of that subtree could end up being the root. It's also necessary
-// for extended output in the general case.
-//
-// As with compress_subtree_wide(), this function is not used on inputs of 1
-// chunk or less. That's a different codepath.
-fn compress_subtree_to_parent_node<J: join::Join>(
- input: &[u8],
- key: &CVWords,
- chunk_counter: u64,
- flags: u8,
- platform: Platform,
-) -> [u8; BLOCK_LEN] {
- debug_assert!(input.len() > CHUNK_LEN);
- let mut cv_array = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
- let mut num_cvs =
- compress_subtree_wide::<J>(input, key, chunk_counter, flags, platform, &mut cv_array);
- debug_assert!(num_cvs >= 2);
-
- // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
- // compress_subtree_wide() returns more than 2 chaining values. Condense
- // them into 2 by forming parent nodes repeatedly.
- let mut out_array = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN / 2];
- while num_cvs > 2 {
- let cv_slice = &cv_array[..num_cvs * OUT_LEN];
- num_cvs = compress_parents_parallel(cv_slice, key, flags, platform, &mut out_array);
- cv_array[..num_cvs * OUT_LEN].copy_from_slice(&out_array[..num_cvs * OUT_LEN]);
- }
- cv_array[0..2 * OUT_LEN].try_into().unwrap()
-}
-
-// Hash a complete input all at once. Unlike compress_subtree_wide() and
-// compress_subtree_to_parent_node(), this function handles the 1 chunk case.
-fn hash_all_at_once<J: join::Join>(input: &[u8], key: &CVWords, flags: u8) -> Output {
- let platform = Platform::detect();
-
- // If the whole subtree is one chunk, hash it directly with a ChunkState.
- if input.len() <= CHUNK_LEN {
- return ChunkState::new(key, 0, flags, platform)
- .update(input)
- .output();
- }
-
- // Otherwise construct an Output object from the parent node returned by
- // compress_subtree_to_parent_node().
- Output {
- input_chaining_value: *key,
- block: compress_subtree_to_parent_node::<J>(input, key, 0, flags, platform),
- block_len: BLOCK_LEN as u8,
- counter: 0,
- flags: flags | PARENT,
- platform,
- }
-}
-
-/// The default hash function.
-///
-/// For an incremental version that accepts multiple writes, see
-/// [`Hasher::update`].
-///
-/// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`] and
-/// [`OutputReader`].
-///
-/// This function is always single-threaded.
-pub fn hash(input: &[u8]) -> Hash {
- hash_all_at_once::<join::SerialJoin>(input, IV, 0).root_hash()
-}
-
-/// The keyed hash function.
-///
-/// This is suitable for use as a message authentication code, for example to
-/// replace an HMAC instance. In that use case, the constant-time equality
-/// checking provided by [`Hash`](struct.Hash.html) is almost always a security
-/// requirement, and callers need to be careful not to compare MACs as raw
-/// bytes.
-///
-/// For output sizes other than 32 bytes, see [`Hasher::new_keyed`],
-/// [`Hasher::finalize_xof`], and [`OutputReader`].
-///
-/// This function is always single-threaded. For multithreading support, see
-/// [`Hasher::new_keyed`]
-pub fn keyed_hash(key: &[u8; KEY_LEN], input: &[u8]) -> Hash {
- let key_words = platform::words_from_le_bytes_32(key);
- hash_all_at_once::<join::SerialJoin>(input, &key_words, KEYED_HASH).root_hash()
-}
-
-/// The key derivation function.
-///
-/// Given cryptographic key material of any length and a context string of any
-/// length, this function outputs a 32-byte derived subkey. **The context string
-/// should be hardcoded, globally unique, and application-specific.** A good
-/// default format for such strings is `"[application] [commit timestamp]
-/// [purpose]"`, e.g., `"example.com 2019-12-25 16:18:03 session tokens v1"`.
-///
-/// Key derivation is important when you want to use the same key in multiple
-/// algorithms or use cases. Using the same key with different cryptographic
-/// algorithms is generally forbidden, and deriving a separate subkey for each
-/// use case protects you from bad interactions. Derived keys also mitigate the
-/// damage from one part of your application accidentally leaking its key.
-///
-/// As a rare exception to that general rule, however, it is possible to use
-/// `derive_key` itself with key material that you are already using with
-/// another algorithm. You might need to do this if you're adding features to
-/// an existing application, which does not yet use key derivation internally.
-/// However, you still must not share key material with algorithms that forbid
-/// key reuse entirely, like a one-time pad. For more on this, see sections 6.2
-/// and 7.8 of the [BLAKE3 paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf).
-///
-/// Note that BLAKE3 is not a password hash, and **`derive_key` should never be
-/// used with passwords.** Instead, use a dedicated password hash like
-/// [Argon2]. Password hashes are entirely different from generic hash
-/// functions, with opposite design requirements.
-///
-/// For output sizes other than 32 bytes, see [`Hasher::new_derive_key`],
-/// [`Hasher::finalize_xof`], and [`OutputReader`].
-///
-/// This function is always single-threaded. For multithreading support, see
-/// [`Hasher::new_derive_key`]
-///
-/// [Argon2]: https://en.wikipedia.org/wiki/Argon2
-pub fn derive_key(context: &str, key_material: &[u8]) -> [u8; OUT_LEN] {
- let context_key =
- hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
- .root_hash();
- let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
- hash_all_at_once::<join::SerialJoin>(key_material, &context_key_words, DERIVE_KEY_MATERIAL)
- .root_hash()
- .0
-}
-
-fn parent_node_output(
- left_child: &CVBytes,
- right_child: &CVBytes,
- key: &CVWords,
- flags: u8,
- platform: Platform,
-) -> Output {
- let mut block = [0; BLOCK_LEN];
- block[..32].copy_from_slice(left_child);
- block[32..].copy_from_slice(right_child);
- Output {
- input_chaining_value: *key,
- block,
- block_len: BLOCK_LEN as u8,
- counter: 0,
- flags: flags | PARENT,
- platform,
- }
-}
-
-/// An incremental hash state that can accept any number of writes.
-///
-/// When the `traits-preview` Cargo feature is enabled, this type implements
-/// several commonly used traits from the
-/// [`digest`](https://crates.io/crates/digest) crate. However, those
-/// traits aren't stable, and they're expected to change in incompatible ways
-/// before that crate reaches 1.0. For that reason, this crate makes no SemVer
-/// guarantees for this feature, and callers who use it should expect breaking
-/// changes between patch versions.
-///
-/// **Performance note:** The [`update`](#method.update) method can't take full
-/// advantage of SIMD optimizations if its input buffer is too small or oddly
-/// sized. Using a 16 KiB buffer, or any multiple of that, enables all currently
-/// supported SIMD instruction sets.
-///
-/// # Examples
-///
-/// ```
-/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
-/// // Hash an input incrementally.
-/// let mut hasher = narcissus_core::blake3::Hasher::new();
-/// hasher.update(b"foo");
-/// hasher.update(b"bar");
-/// hasher.update(b"baz");
-/// assert_eq!(hasher.finalize(), narcissus_core::blake3::hash(b"foobarbaz"));
-///
-/// # Ok(())
-/// # }
-/// ```
-#[derive(Clone)]
-pub struct Hasher {
- key: CVWords,
- chunk_state: ChunkState,
- // The stack size is MAX_DEPTH + 1 because we do lazy merging. For example,
- // with 7 chunks, we have 3 entries in the stack. Adding an 8th chunk
- // requires a 4th entry, rather than merging everything down to 1, because
- // we don't know whether more input is coming. This is different from how
- // the reference implementation does things.
- cv_stack: FixedVec<CVBytes, { MAX_DEPTH + 1 }>,
-}
-
-impl Hasher {
- fn new_internal(key: &CVWords, flags: u8) -> Self {
- Self {
- key: *key,
- chunk_state: ChunkState::new(key, 0, flags, Platform::detect()),
- cv_stack: FixedVec::new(),
- }
- }
-
- /// Construct a new `Hasher` for the regular hash function.
- pub fn new() -> Self {
- Self::new_internal(IV, 0)
- }
-
- /// Construct a new `Hasher` for the keyed hash function. See
- /// [`keyed_hash`].
- ///
- /// [`keyed_hash`]: fn.keyed_hash.html
- pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
- let key_words = platform::words_from_le_bytes_32(key);
- Self::new_internal(&key_words, KEYED_HASH)
- }
-
- /// Construct a new `Hasher` for the key derivation function. See
- /// [`derive_key`]. The context string should be hardcoded, globally
- /// unique, and application-specific.
- ///
- /// [`derive_key`]: fn.derive_key.html
- pub fn new_derive_key(context: &str) -> Self {
- let context_key =
- hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
- .root_hash();
- let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
- Self::new_internal(&context_key_words, DERIVE_KEY_MATERIAL)
- }
-
- /// Reset the `Hasher` to its initial state.
- ///
- /// This is functionally the same as overwriting the `Hasher` with a new
- /// one, using the same key or context string if any.
- pub fn reset(&mut self) -> &mut Self {
- self.chunk_state = ChunkState::new(
- &self.key,
- 0,
- self.chunk_state.flags,
- self.chunk_state.platform,
- );
- self.cv_stack.clear();
- self
- }
-
- // As described in push_cv() below, we do "lazy merging", delaying merges
- // until right before the next CV is about to be added. This is different
- // from the reference implementation. Another difference is that we aren't
- // always merging 1 chunk at a time. Instead, each CV might represent any
- // power-of-two number of chunks, as long as the smaller-above-larger stack
- // order is maintained. Instead of the "count the trailing 0-bits"
- // algorithm described in the spec, we use a "count the total number of
- // 1-bits" variant that doesn't require us to retain the subtree size of
- // the CV on top of the stack. The principle is the same: each CV that
- // should remain in the stack is represented by a 1-bit in the total number
- // of chunks (or bytes) so far.
- fn merge_cv_stack(&mut self, total_len: u64) {
- let post_merge_stack_len = total_len.count_ones() as usize;
- while self.cv_stack.len() > post_merge_stack_len {
- let right_child = self.cv_stack.pop().unwrap();
- let left_child = self.cv_stack.pop().unwrap();
- let parent_output = parent_node_output(
- &left_child,
- &right_child,
- &self.key,
- self.chunk_state.flags,
- self.chunk_state.platform,
- );
- self.cv_stack.push(parent_output.chaining_value());
- }
- }
-
- // In reference_impl.rs, we merge the new CV with existing CVs from the
- // stack before pushing it. We can do that because we know more input is
- // coming, so we know none of the merges are root.
- //
- // This setting is different. We want to feed as much input as possible to
- // compress_subtree_wide(), without setting aside anything for the
- // chunk_state. If the user gives us 64 KiB, we want to parallelize over
- // all 64 KiB at once as a single subtree, if at all possible.
- //
- // This leads to two problems:
- // 1) This 64 KiB input might be the only call that ever gets made to
- // update. In this case, the root node of the 64 KiB subtree would be
- // the root node of the whole tree, and it would need to be ROOT
- // finalized. We can't compress it until we know.
- // 2) This 64 KiB input might complete a larger tree, whose root node is
- // similarly going to be the the root of the whole tree. For example,
- // maybe we have 196 KiB (that is, 128 + 64) hashed so far. We can't
- // compress the node at the root of the 256 KiB subtree until we know
- // how to finalize it.
- //
- // The second problem is solved with "lazy merging". That is, when we're
- // about to add a CV to the stack, we don't merge it with anything first,
- // as the reference impl does. Instead we do merges using the *previous* CV
- // that was added, which is sitting on top of the stack, and we put the new
- // CV (unmerged) on top of the stack afterwards. This guarantees that we
- // never merge the root node until finalize().
- //
- // Solving the first problem requires an additional tool,
- // compress_subtree_to_parent_node(). That function always returns the top
- // *two* chaining values of the subtree it's compressing. We then do lazy
- // merging with each of them separately, so that the second CV will always
- // remain unmerged. (That also helps us support extendable output when
- // we're hashing an input all-at-once.)
- fn push_cv(&mut self, new_cv: &CVBytes, chunk_counter: u64) {
- self.merge_cv_stack(chunk_counter);
- self.cv_stack.push(*new_cv);
- }
-
- /// Add input bytes to the hash state. You can call this any number of
- /// times.
- ///
- /// This method is always single-threaded.
- ///
- /// Note that the degree of SIMD parallelism that `update` can use is
- /// limited by the size of this input buffer. The 8 KiB buffer currently
- /// used by [`std::io::copy`] is enough to leverage AVX2, for example, but
- /// not enough to leverage AVX-512. A 16 KiB buffer is large enough to
- /// leverage all currently supported SIMD instruction sets.
- ///
- /// [`std::io::copy`]: https://doc.rust-lang.org/std/io/fn.copy.html
- pub fn update(&mut self, input: &[u8]) -> &mut Self {
- self.update_with_join::<join::SerialJoin>(input)
- }
-
- fn update_with_join<J: join::Join>(&mut self, mut input: &[u8]) -> &mut Self {
- // If we have some partial chunk bytes in the internal chunk_state, we
- // need to finish that chunk first.
- if self.chunk_state.len() > 0 {
- let want = CHUNK_LEN - self.chunk_state.len();
- let take = cmp::min(want, input.len());
- self.chunk_state.update(&input[..take]);
- input = &input[take..];
- if !input.is_empty() {
- // We've filled the current chunk, and there's more input
- // coming, so we know it's not the root and we can finalize it.
- // Then we'll proceed to hashing whole chunks below.
- debug_assert_eq!(self.chunk_state.len(), CHUNK_LEN);
- let chunk_cv = self.chunk_state.output().chaining_value();
- self.push_cv(&chunk_cv, self.chunk_state.chunk_counter);
- self.chunk_state = ChunkState::new(
- &self.key,
- self.chunk_state.chunk_counter + 1,
- self.chunk_state.flags,
- self.chunk_state.platform,
- );
- } else {
- return self;
- }
- }
-
- // Now the chunk_state is clear, and we have more input. If there's
- // more than a single chunk (so, definitely not the root chunk), hash
- // the largest whole subtree we can, with the full benefits of SIMD and
- // multithreading parallelism. Two restrictions:
- // - The subtree has to be a power-of-2 number of chunks. Only subtrees
- // along the right edge can be incomplete, and we don't know where
- // the right edge is going to be until we get to finalize().
- // - The subtree must evenly divide the total number of chunks up until
- // this point (if total is not 0). If the current incomplete subtree
- // is only waiting for 1 more chunk, we can't hash a subtree of 4
- // chunks. We have to complete the current subtree first.
- // Because we might need to break up the input to form powers of 2, or
- // to evenly divide what we already have, this part runs in a loop.
- while input.len() > CHUNK_LEN {
- debug_assert_eq!(self.chunk_state.len(), 0, "no partial chunk data");
- debug_assert_eq!(CHUNK_LEN.count_ones(), 1, "power of 2 chunk len");
- let mut subtree_len = largest_power_of_two_leq(input.len());
- let count_so_far = self.chunk_state.chunk_counter * CHUNK_LEN as u64;
- // Shrink the subtree_len until it evenly divides the count so far.
- // We know that subtree_len itself is a power of 2, so we can use a
- // bitmasking trick instead of an actual remainder operation. (Note
- // that if the caller consistently passes power-of-2 inputs of the
- // same size, as is hopefully typical, this loop condition will
- // always fail, and subtree_len will always be the full length of
- // the input.)
- //
- // An aside: We don't have to shrink subtree_len quite this much.
- // For example, if count_so_far is 1, we could pass 2 chunks to
- // compress_subtree_to_parent_node. Since we'll get 2 CVs back,
- // we'll still get the right answer in the end, and we might get to
- // use 2-way SIMD parallelism. The problem with this optimization,
- // is that it gets us stuck always hashing 2 chunks. The total
- // number of chunks will remain odd, and we'll never graduate to
- // higher degrees of parallelism. See
- // https://github.com/BLAKE3-team/BLAKE3/issues/69.
- while (subtree_len - 1) as u64 & count_so_far != 0 {
- subtree_len /= 2;
- }
- // The shrunken subtree_len might now be 1 chunk long. If so, hash
- // that one chunk by itself. Otherwise, compress the subtree into a
- // pair of CVs.
- let subtree_chunks = (subtree_len / CHUNK_LEN) as u64;
- if subtree_len <= CHUNK_LEN {
- debug_assert_eq!(subtree_len, CHUNK_LEN);
- self.push_cv(
- &ChunkState::new(
- &self.key,
- self.chunk_state.chunk_counter,
- self.chunk_state.flags,
- self.chunk_state.platform,
- )
- .update(&input[..subtree_len])
- .output()
- .chaining_value(),
- self.chunk_state.chunk_counter,
- );
- } else {
- // This is the high-performance happy path, though getting here
- // depends on the caller giving us a long enough input.
- let cv_pair = compress_subtree_to_parent_node::<J>(
- &input[..subtree_len],
- &self.key,
- self.chunk_state.chunk_counter,
- self.chunk_state.flags,
- self.chunk_state.platform,
- );
- let left_cv = cv_pair[0..32].try_into().unwrap();
- let right_cv = cv_pair[32..64].try_into().unwrap();
- // Push the two CVs we received into the CV stack in order. Because
- // the stack merges lazily, this guarantees we aren't merging the
- // root.
- self.push_cv(left_cv, self.chunk_state.chunk_counter);
- self.push_cv(
- right_cv,
- self.chunk_state.chunk_counter + (subtree_chunks / 2),
- );
- }
- self.chunk_state.chunk_counter += subtree_chunks;
- input = &input[subtree_len..];
- }
-
- // What remains is 1 chunk or less. Add it to the chunk state.
- debug_assert!(input.len() <= CHUNK_LEN);
- if !input.is_empty() {
- self.chunk_state.update(input);
- // Having added some input to the chunk_state, we know what's in
- // the CV stack won't become the root node, and we can do an extra
- // merge. This simplifies finalize().
- self.merge_cv_stack(self.chunk_state.chunk_counter);
- }
-
- self
- }
-
- fn final_output(&self) -> Output {
- // If the current chunk is the only chunk, that makes it the root node
- // also. Convert it directly into an Output. Otherwise, we need to
- // merge subtrees below.
- if self.cv_stack.is_empty() {
- debug_assert_eq!(self.chunk_state.chunk_counter, 0);
- return self.chunk_state.output();
- }
-
- // If there are any bytes in the ChunkState, finalize that chunk and
- // merge its CV with everything in the CV stack. In that case, the work
- // we did at the end of update() above guarantees that the stack
- // doesn't contain any unmerged subtrees that need to be merged first.
- // (This is important, because if there were two chunk hashes sitting
- // on top of the stack, they would need to merge with each other, and
- // merging a new chunk hash into them would be incorrect.)
- //
- // If there are no bytes in the ChunkState, we'll merge what's already
- // in the stack. In this case it's fine if there are unmerged chunks on
- // top, because we'll merge them with each other. Note that the case of
- // the empty chunk is taken care of above.
- let mut output: Output;
- let mut num_cvs_remaining = self.cv_stack.len();
- if self.chunk_state.len() > 0 {
- debug_assert_eq!(
- self.cv_stack.len(),
- self.chunk_state.chunk_counter.count_ones() as usize,
- "cv stack does not need a merge"
- );
- output = self.chunk_state.output();
- } else {
- debug_assert!(self.cv_stack.len() >= 2);
- output = parent_node_output(
- &self.cv_stack[num_cvs_remaining - 2],
- &self.cv_stack[num_cvs_remaining - 1],
- &self.key,
- self.chunk_state.flags,
- self.chunk_state.platform,
- );
- num_cvs_remaining -= 2;
- }
- while num_cvs_remaining > 0 {
- output = parent_node_output(
- &self.cv_stack[num_cvs_remaining - 1],
- &output.chaining_value(),
- &self.key,
- self.chunk_state.flags,
- self.chunk_state.platform,
- );
- num_cvs_remaining -= 1;
- }
- output
- }
-
- /// Finalize the hash state and return the [`Hash`](struct.Hash.html) of
- /// the input.
- ///
- /// This method is idempotent. Calling it twice will give the same result.
- /// You can also add more input and finalize again.
- pub fn finalize(&self) -> Hash {
- self.final_output().root_hash()
- }
-
- /// Finalize the hash state and return an [`OutputReader`], which can
- /// supply any number of output bytes.
- ///
- /// This method is idempotent. Calling it twice will give the same result.
- /// You can also add more input and finalize again.
- ///
- /// [`OutputReader`]: struct.OutputReader.html
- pub fn finalize_xof(&self) -> OutputReader {
- OutputReader::new(self.final_output())
- }
-
- /// Return the total number of bytes hashed so far.
- pub fn count(&self) -> u64 {
- self.chunk_state.chunk_counter * CHUNK_LEN as u64 + self.chunk_state.len() as u64
- }
-}
-
-// Don't derive(Debug), because the state may be secret.
-impl fmt::Debug for Hasher {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_struct("Hasher")
- .field("flags", &self.chunk_state.flags)
- .field("platform", &self.chunk_state.platform)
- .finish()
- }
-}
-
-impl Default for Hasher {
- #[inline]
- fn default() -> Self {
- Self::new()
- }
-}
-
-/// An incremental reader for extended output, returned by
-/// [`Hasher::finalize_xof`](struct.Hasher.html#method.finalize_xof).
-///
-/// Shorter BLAKE3 outputs are prefixes of longer ones, and explicitly requesting a short output is
-/// equivalent to truncating the default-length output. Note that this is a difference between
-/// BLAKE2 and BLAKE3.
-///
-/// # Security notes
-///
-/// Outputs shorter than the default length of 32 bytes (256 bits) provide less security. An N-bit
-/// BLAKE3 output is intended to provide N bits of first and second preimage resistance and N/2
-/// bits of collision resistance, for any N up to 256. Longer outputs don't provide any additional
-/// security.
-///
-/// Avoid relying on the secrecy of the output offset, that is, the number of output bytes read or
-/// the arguments to [`seek`](struct.OutputReader.html#method.seek) or
-/// [`set_position`](struct.OutputReader.html#method.set_position). [_Block-Cipher-Based Tree
-/// Hashing_ by Aldo Gunsing](https://eprint.iacr.org/2022/283) shows that an attacker who knows
-/// both the message and the key (if any) can easily determine the offset of an extended output.
-/// For comparison, AES-CTR has a similar property: if you know the key, you can decrypt a block
-/// from an unknown position in the output stream to recover its block index. Callers with strong
-/// secret keys aren't affected in practice, but secret offsets are a [design
-/// smell](https://en.wikipedia.org/wiki/Design_smell) in any case.
-#[derive(Clone)]
-pub struct OutputReader {
- inner: Output,
- position_within_block: u8,
-}
-
-impl OutputReader {
- fn new(inner: Output) -> Self {
- Self {
- inner,
- position_within_block: 0,
- }
- }
-
- /// Fill a buffer with output bytes and advance the position of the
- /// `OutputReader`. This is equivalent to [`Read::read`], except that it
- /// doesn't return a `Result`. Both methods always fill the entire buffer.
- ///
- /// Note that `OutputReader` doesn't buffer output bytes internally, so
- /// calling `fill` repeatedly with a short-length or odd-length slice will
- /// end up performing the same compression multiple times. If you're
- /// reading output in a loop, prefer a slice length that's a multiple of
- /// 64.
- ///
- /// The maximum output size of BLAKE3 is 2<sup>64</sup>-1 bytes. If you try
- /// to extract more than that, for example by seeking near the end and
- /// reading further, the behavior is unspecified.
- ///
- /// [`Read::read`]: #method.read
- pub fn fill(&mut self, mut buf: &mut [u8]) {
- while !buf.is_empty() {
- let block: [u8; BLOCK_LEN] = self.inner.root_output_block();
- let output_bytes = &block[self.position_within_block as usize..];
- let take = cmp::min(buf.len(), output_bytes.len());
- buf[..take].copy_from_slice(&output_bytes[..take]);
- buf = &mut buf[take..];
- self.position_within_block += take as u8;
- if self.position_within_block == BLOCK_LEN as u8 {
- self.inner.counter += 1;
- self.position_within_block = 0;
- }
- }
- }
-
- /// Return the current read position in the output stream. This is
- /// equivalent to [`Seek::stream_position`], except that it doesn't return
- /// a `Result`. The position of a new `OutputReader` starts at 0, and each
- /// call to [`fill`] or [`Read::read`] moves the position forward by the
- /// number of bytes read.
- ///
- /// [`Seek::stream_position`]: #method.stream_position
- /// [`fill`]: #method.fill
- /// [`Read::read`]: #method.read
- pub fn position(&self) -> u64 {
- self.inner.counter * BLOCK_LEN as u64 + self.position_within_block as u64
- }
-
- /// Seek to a new read position in the output stream. This is equivalent to
- /// calling [`Seek::seek`] with [`SeekFrom::Start`], except that it doesn't
- /// return a `Result`.
- ///
- /// [`Seek::seek`]: #method.seek
- /// [`SeekFrom::Start`]: https://doc.rust-lang.org/std/io/enum.SeekFrom.html
- pub fn set_position(&mut self, position: u64) {
- self.position_within_block = (position % BLOCK_LEN as u64) as u8;
- self.inner.counter = position / BLOCK_LEN as u64;
- }
-}
-
-// Don't derive(Debug), because the state may be secret.
-impl fmt::Debug for OutputReader {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_struct("OutputReader")
- .field("position", &self.position())
- .finish()
- }
-}
+++ /dev/null
-use crate::slice::{array_chunks, array_chunks_mut};
-
-use super::{portable, CVWords, IncrementCounter, BLOCK_LEN};
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-pub const MAX_SIMD_DEGREE: usize = 8;
-
-#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
-pub const MAX_SIMD_DEGREE: usize = 1;
-
-// There are some places where we want a static size that's equal to the
-// MAX_SIMD_DEGREE, but also at least 2. Constant contexts aren't currently
-// allowed to use cmp::max, so we have to hardcode this additional constant
-// value. Get rid of this once cmp::max is a const fn.
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-pub const MAX_SIMD_DEGREE_OR_2: usize = MAX_SIMD_DEGREE;
-
-#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
-pub const MAX_SIMD_DEGREE_OR_2: usize = 2;
-
-#[derive(Clone, Copy, Debug)]
-pub enum Platform {
- Portable,
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- SSE2,
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- SSE41,
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- AVX2,
-}
-
-impl Platform {
- #[allow(unreachable_code)]
- pub fn detect() -> Self {
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- {
- if avx2_detected() {
- return Platform::AVX2;
- }
- if sse41_detected() {
- return Platform::SSE41;
- }
- if sse2_detected() {
- return Platform::SSE2;
- }
- }
-
- Platform::Portable
- }
-
- pub fn simd_degree(&self) -> usize {
- let degree = match self {
- Platform::Portable => 1,
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE2 => 4,
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE41 => 4,
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::AVX2 => 8,
- };
- debug_assert!(degree <= MAX_SIMD_DEGREE);
- degree
- }
-
- pub fn compress_in_place(
- &self,
- cv: &mut CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
- ) {
- match self {
- Platform::Portable => portable::compress_in_place(cv, block, block_len, counter, flags),
- // Safe because detect() checked for platform support.
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE2 => unsafe {
- super::sse2::compress_in_place(cv, block, block_len, counter, flags)
- },
- // Safe because detect() checked for platform support.
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE41 | Platform::AVX2 => unsafe {
- super::sse41::compress_in_place(cv, block, block_len, counter, flags)
- },
- }
- }
-
- pub fn compress_xof(
- &self,
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
- ) -> [u8; 64] {
- match self {
- Platform::Portable => portable::compress_xof(cv, block, block_len, counter, flags),
- // Safe because detect() checked for platform support.
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE2 => unsafe {
- super::sse2::compress_xof(cv, block, block_len, counter, flags)
- },
- // Safe because detect() checked for platform support.
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE41 | Platform::AVX2 => unsafe {
- super::sse41::compress_xof(cv, block, block_len, counter, flags)
- },
- }
- }
-
- // IMPLEMENTATION NOTE
- // ===================
- // hash_many() applies two optimizations. The critically important
- // optimization is the high-performance parallel SIMD hashing mode,
- // described in detail in the spec. This more than doubles throughput per
- // thread. Another optimization is keeping the state vectors transposed
- // from block to block within a chunk. When state vectors are transposed
- // after every block, there's a small but measurable performance loss.
- // Compressing chunks with a dedicated loop avoids this.
-
- pub fn hash_many<const N: usize>(
- &self,
- inputs: &[&[u8; N]],
- key: &CVWords,
- counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut [u8],
- ) {
- match self {
- Platform::Portable => portable::hash_many(
- inputs,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- out,
- ),
- // Safe because detect() checked for platform support.
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE2 => unsafe {
- super::sse2::hash_many(
- inputs,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- out,
- )
- },
- // Safe because detect() checked for platform support.
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::SSE41 => unsafe {
- super::sse41::hash_many(
- inputs,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- out,
- )
- },
- // Safe because detect() checked for platform support.
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- Platform::AVX2 => unsafe {
- super::avx2::hash_many(
- inputs,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- out,
- )
- },
- }
- }
-
- // Explicit platform constructors, for benchmarks.
-
- pub fn portable() -> Self {
- Self::Portable
- }
-
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- pub fn sse2() -> Option<Self> {
- if sse2_detected() {
- Some(Self::SSE2)
- } else {
- None
- }
- }
-
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- pub fn sse41() -> Option<Self> {
- if sse41_detected() {
- Some(Self::SSE41)
- } else {
- None
- }
- }
-
- #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
- pub fn avx2() -> Option<Self> {
- if avx2_detected() {
- Some(Self::AVX2)
- } else {
- None
- }
- }
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[inline(always)]
-pub fn avx2_detected() -> bool {
- // Static check, e.g. for building with target-cpu=native.
- #[cfg(target_feature = "avx2")]
- {
- return true;
- }
-
- #[cfg(not(target_feature = "avx2"))]
- return is_x86_feature_detected!("avx2");
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[inline(always)]
-pub fn sse41_detected() -> bool {
- // Static check, e.g. for building with target-cpu=native.
- #[cfg(target_feature = "sse4.1")]
- {
- return true;
- }
-
- #[cfg(not(target_feature = "sse4.1"))]
- return is_x86_feature_detected!("sse4.1");
-}
-
-#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
-#[inline(always)]
-#[allow(unreachable_code)]
-pub fn sse2_detected() -> bool {
- // Static check, e.g. for building with target-cpu=native.
- #[cfg(target_feature = "sse2")]
- {
- return true;
- }
-
- #[cfg(not(target_feature = "sse2"))]
- return is_x86_feature_detected!("sse2");
-}
-
-#[inline(always)]
-pub fn words_from_le_bytes_32(bytes: &[u8; 32]) -> [u32; 8] {
- let mut out = [0; 8];
- for (chunk, word) in array_chunks(bytes).zip(out.iter_mut()) {
- *word = u32::from_le_bytes(*chunk)
- }
- out
-}
-
-#[inline(always)]
-pub fn words_from_le_bytes_64(bytes: &[u8; 64]) -> [u32; 16] {
- let mut out = [0; 16];
- for (chunk, word) in array_chunks(bytes).zip(out.iter_mut()) {
- *word = u32::from_le_bytes(*chunk)
- }
- out
-}
-
-#[inline(always)]
-pub fn le_bytes_from_words_32(words: &[u32; 8]) -> [u8; 32] {
- let mut out = [0; 32];
- for (word, chunk) in words.iter().zip(array_chunks_mut(&mut out)) {
- *chunk = word.to_le_bytes();
- }
- out
-}
-
-#[inline(always)]
-pub fn le_bytes_from_words_64(words: &[u32; 16]) -> [u8; 64] {
- let mut out = [0; 64];
- for (word, chunk) in words.iter().zip(array_chunks_mut(&mut out)) {
- *chunk = word.to_le_bytes();
- }
- out
-}
+++ /dev/null
-use crate::slice::array_chunks_mut;
-
-use super::{
- counter_high, counter_low, platform, CVBytes, CVWords, IncrementCounter, BLOCK_LEN, IV,
- MSG_SCHEDULE, OUT_LEN,
-};
-
-#[inline(always)]
-fn g(state: &mut [u32; 16], a: usize, b: usize, c: usize, d: usize, x: u32, y: u32) {
- state[a] = state[a].wrapping_add(state[b]).wrapping_add(x);
- state[d] = (state[d] ^ state[a]).rotate_right(16);
- state[c] = state[c].wrapping_add(state[d]);
- state[b] = (state[b] ^ state[c]).rotate_right(12);
- state[a] = state[a].wrapping_add(state[b]).wrapping_add(y);
- state[d] = (state[d] ^ state[a]).rotate_right(8);
- state[c] = state[c].wrapping_add(state[d]);
- state[b] = (state[b] ^ state[c]).rotate_right(7);
-}
-
-#[inline(always)]
-fn round(state: &mut [u32; 16], msg: &[u32; 16], round: usize) {
- // Select the message schedule based on the round.
- let schedule = MSG_SCHEDULE[round];
-
- // Mix the columns.
- g(state, 0, 4, 8, 12, msg[schedule[0]], msg[schedule[1]]);
- g(state, 1, 5, 9, 13, msg[schedule[2]], msg[schedule[3]]);
- g(state, 2, 6, 10, 14, msg[schedule[4]], msg[schedule[5]]);
- g(state, 3, 7, 11, 15, msg[schedule[6]], msg[schedule[7]]);
-
- // Mix the diagonals.
- g(state, 0, 5, 10, 15, msg[schedule[8]], msg[schedule[9]]);
- g(state, 1, 6, 11, 12, msg[schedule[10]], msg[schedule[11]]);
- g(state, 2, 7, 8, 13, msg[schedule[12]], msg[schedule[13]]);
- g(state, 3, 4, 9, 14, msg[schedule[14]], msg[schedule[15]]);
-}
-
-#[inline(always)]
-fn compress_pre(
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) -> [u32; 16] {
- let block_words = platform::words_from_le_bytes_64(block);
-
- let mut state = [
- cv[0],
- cv[1],
- cv[2],
- cv[3],
- cv[4],
- cv[5],
- cv[6],
- cv[7],
- IV[0],
- IV[1],
- IV[2],
- IV[3],
- counter_low(counter),
- counter_high(counter),
- block_len as u32,
- flags as u32,
- ];
-
- round(&mut state, &block_words, 0);
- round(&mut state, &block_words, 1);
- round(&mut state, &block_words, 2);
- round(&mut state, &block_words, 3);
- round(&mut state, &block_words, 4);
- round(&mut state, &block_words, 5);
- round(&mut state, &block_words, 6);
-
- state
-}
-
-pub fn compress_in_place(
- cv: &mut CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) {
- let state = compress_pre(cv, block, block_len, counter, flags);
-
- cv[0] = state[0] ^ state[8];
- cv[1] = state[1] ^ state[9];
- cv[2] = state[2] ^ state[10];
- cv[3] = state[3] ^ state[11];
- cv[4] = state[4] ^ state[12];
- cv[5] = state[5] ^ state[13];
- cv[6] = state[6] ^ state[14];
- cv[7] = state[7] ^ state[15];
-}
-
-pub fn compress_xof(
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) -> [u8; 64] {
- let mut state = compress_pre(cv, block, block_len, counter, flags);
- state[0] ^= state[8];
- state[1] ^= state[9];
- state[2] ^= state[10];
- state[3] ^= state[11];
- state[4] ^= state[12];
- state[5] ^= state[13];
- state[6] ^= state[14];
- state[7] ^= state[15];
- state[8] ^= cv[0];
- state[9] ^= cv[1];
- state[10] ^= cv[2];
- state[11] ^= cv[3];
- state[12] ^= cv[4];
- state[13] ^= cv[5];
- state[14] ^= cv[6];
- state[15] ^= cv[7];
- platform::le_bytes_from_words_64(&state)
-}
-
-pub fn hash1<const N: usize>(
- input: &[u8; N],
- key: &CVWords,
- counter: u64,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut CVBytes,
-) {
- debug_assert_eq!(N % BLOCK_LEN, 0, "uneven blocks");
- let mut cv = *key;
- let mut block_flags = flags | flags_start;
- let mut slice = &input[..];
- while slice.len() >= BLOCK_LEN {
- if slice.len() == BLOCK_LEN {
- block_flags |= flags_end;
- }
- //let (block, rem) = split_array_ref(slice);
-
- compress_in_place(
- &mut cv,
- &slice[0..BLOCK_LEN].try_into().unwrap(),
- BLOCK_LEN as u8,
- counter,
- block_flags,
- );
- block_flags = flags;
- //slice = rem;
- slice = &slice[BLOCK_LEN..];
- }
- *out = platform::le_bytes_from_words_32(&cv);
-}
-
-pub fn hash_many<const N: usize>(
- inputs: &[&[u8; N]],
- key: &CVWords,
- mut counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut [u8],
-) {
- debug_assert!(out.len() >= inputs.len() * OUT_LEN, "out too short");
- for (&input, output) in inputs.iter().zip(array_chunks_mut(out)) {
- hash1(input, key, counter, flags, flags_start, flags_end, output);
- if increment_counter.yes() {
- counter += 1;
- }
- }
-}
-
-#[cfg(test)]
-pub mod test {
- use super::super::test;
- use super::*;
-
- // This is basically testing the portable implementation against itself,
- // but it also checks that compress_in_place and compress_xof are
- // consistent. And there are tests against the reference implementation and
- // against hardcoded test vectors elsewhere.
- #[test]
- fn test_compress() {
- test::test_compress_fn(compress_in_place, compress_xof);
- }
-
- // Ditto.
- #[test]
- fn test_hash_many() {
- test::test_hash_many_fn(hash_many, hash_many);
- }
-}
+++ /dev/null
-//! This is the reference implementation of BLAKE3. It is used for testing and
-//! as a readable example of the algorithms involved. Section 5.1 of [the BLAKE3
-//! spec](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf)
-//! discusses this implementation. You can render docs for this implementation
-//! by running `cargo doc --open` in this directory.
-//!
-//! # Example
-//!
-//! ```
-//! let mut hasher = reference_impl::Hasher::new();
-//! hasher.update(b"abc");
-//! hasher.update(b"def");
-//! let mut hash = [0; 32];
-//! hasher.finalize(&mut hash);
-//! let mut extended_hash = [0; 500];
-//! hasher.finalize(&mut extended_hash);
-//! assert_eq!(hash, extended_hash[..32]);
-//! ```
-
-use core::cmp::min;
-use core::convert::TryInto;
-
-const OUT_LEN: usize = 32;
-const KEY_LEN: usize = 32;
-const BLOCK_LEN: usize = 64;
-const CHUNK_LEN: usize = 1024;
-
-const CHUNK_START: u32 = 1 << 0;
-const CHUNK_END: u32 = 1 << 1;
-const PARENT: u32 = 1 << 2;
-const ROOT: u32 = 1 << 3;
-const KEYED_HASH: u32 = 1 << 4;
-const DERIVE_KEY_CONTEXT: u32 = 1 << 5;
-const DERIVE_KEY_MATERIAL: u32 = 1 << 6;
-
-const IV: [u32; 8] = [
- 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
-];
-
-const MSG_PERMUTATION: [usize; 16] = [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8];
-
-// The mixing function, G, which mixes either a column or a diagonal.
-fn g(state: &mut [u32; 16], a: usize, b: usize, c: usize, d: usize, mx: u32, my: u32) {
- state[a] = state[a].wrapping_add(state[b]).wrapping_add(mx);
- state[d] = (state[d] ^ state[a]).rotate_right(16);
- state[c] = state[c].wrapping_add(state[d]);
- state[b] = (state[b] ^ state[c]).rotate_right(12);
- state[a] = state[a].wrapping_add(state[b]).wrapping_add(my);
- state[d] = (state[d] ^ state[a]).rotate_right(8);
- state[c] = state[c].wrapping_add(state[d]);
- state[b] = (state[b] ^ state[c]).rotate_right(7);
-}
-
-fn round(state: &mut [u32; 16], m: &[u32; 16]) {
- // Mix the columns.
- g(state, 0, 4, 8, 12, m[0], m[1]);
- g(state, 1, 5, 9, 13, m[2], m[3]);
- g(state, 2, 6, 10, 14, m[4], m[5]);
- g(state, 3, 7, 11, 15, m[6], m[7]);
- // Mix the diagonals.
- g(state, 0, 5, 10, 15, m[8], m[9]);
- g(state, 1, 6, 11, 12, m[10], m[11]);
- g(state, 2, 7, 8, 13, m[12], m[13]);
- g(state, 3, 4, 9, 14, m[14], m[15]);
-}
-
-fn permute(m: &mut [u32; 16]) {
- let mut permuted = [0; 16];
- for i in 0..16 {
- permuted[i] = m[MSG_PERMUTATION[i]];
- }
- *m = permuted;
-}
-
-fn compress(
- chaining_value: &[u32; 8],
- block_words: &[u32; 16],
- counter: u64,
- block_len: u32,
- flags: u32,
-) -> [u32; 16] {
- let mut state = [
- chaining_value[0],
- chaining_value[1],
- chaining_value[2],
- chaining_value[3],
- chaining_value[4],
- chaining_value[5],
- chaining_value[6],
- chaining_value[7],
- IV[0],
- IV[1],
- IV[2],
- IV[3],
- counter as u32,
- (counter >> 32) as u32,
- block_len,
- flags,
- ];
- let mut block = *block_words;
-
- round(&mut state, &block); // round 1
- permute(&mut block);
- round(&mut state, &block); // round 2
- permute(&mut block);
- round(&mut state, &block); // round 3
- permute(&mut block);
- round(&mut state, &block); // round 4
- permute(&mut block);
- round(&mut state, &block); // round 5
- permute(&mut block);
- round(&mut state, &block); // round 6
- permute(&mut block);
- round(&mut state, &block); // round 7
-
- for i in 0..8 {
- state[i] ^= state[i + 8];
- state[i + 8] ^= chaining_value[i];
- }
- state
-}
-
-fn first_8_words(compression_output: [u32; 16]) -> [u32; 8] {
- compression_output[0..8].try_into().unwrap()
-}
-
-fn words_from_little_endian_bytes(bytes: &[u8], words: &mut [u32]) {
- debug_assert_eq!(bytes.len(), 4 * words.len());
- for (four_bytes, word) in bytes.chunks_exact(4).zip(words) {
- *word = u32::from_le_bytes(four_bytes.try_into().unwrap());
- }
-}
-
-// Each chunk or parent node can produce either an 8-word chaining value or, by
-// setting the ROOT flag, any number of final output bytes. The Output struct
-// captures the state just prior to choosing between those two possibilities.
-struct Output {
- input_chaining_value: [u32; 8],
- block_words: [u32; 16],
- counter: u64,
- block_len: u32,
- flags: u32,
-}
-
-impl Output {
- fn chaining_value(&self) -> [u32; 8] {
- first_8_words(compress(
- &self.input_chaining_value,
- &self.block_words,
- self.counter,
- self.block_len,
- self.flags,
- ))
- }
-
- fn root_output_bytes(&self, out_slice: &mut [u8]) {
- let mut output_block_counter = 0;
- for out_block in out_slice.chunks_mut(2 * OUT_LEN) {
- let words = compress(
- &self.input_chaining_value,
- &self.block_words,
- output_block_counter,
- self.block_len,
- self.flags | ROOT,
- );
- // The output length might not be a multiple of 4.
- for (word, out_word) in words.iter().zip(out_block.chunks_mut(4)) {
- out_word.copy_from_slice(&word.to_le_bytes()[..out_word.len()]);
- }
- output_block_counter += 1;
- }
- }
-}
-
-struct ChunkState {
- chaining_value: [u32; 8],
- chunk_counter: u64,
- block: [u8; BLOCK_LEN],
- block_len: u8,
- blocks_compressed: u8,
- flags: u32,
-}
-
-impl ChunkState {
- fn new(key_words: [u32; 8], chunk_counter: u64, flags: u32) -> Self {
- Self {
- chaining_value: key_words,
- chunk_counter,
- block: [0; BLOCK_LEN],
- block_len: 0,
- blocks_compressed: 0,
- flags,
- }
- }
-
- fn len(&self) -> usize {
- BLOCK_LEN * self.blocks_compressed as usize + self.block_len as usize
- }
-
- fn start_flag(&self) -> u32 {
- if self.blocks_compressed == 0 {
- CHUNK_START
- } else {
- 0
- }
- }
-
- fn update(&mut self, mut input: &[u8]) {
- while !input.is_empty() {
- // If the block buffer is full, compress it and clear it. More
- // input is coming, so this compression is not CHUNK_END.
- if self.block_len as usize == BLOCK_LEN {
- let mut block_words = [0; 16];
- words_from_little_endian_bytes(&self.block, &mut block_words);
- self.chaining_value = first_8_words(compress(
- &self.chaining_value,
- &block_words,
- self.chunk_counter,
- BLOCK_LEN as u32,
- self.flags | self.start_flag(),
- ));
- self.blocks_compressed += 1;
- self.block = [0; BLOCK_LEN];
- self.block_len = 0;
- }
-
- // Copy input bytes into the block buffer.
- let want = BLOCK_LEN - self.block_len as usize;
- let take = min(want, input.len());
- self.block[self.block_len as usize..][..take].copy_from_slice(&input[..take]);
- self.block_len += take as u8;
- input = &input[take..];
- }
- }
-
- fn output(&self) -> Output {
- let mut block_words = [0; 16];
- words_from_little_endian_bytes(&self.block, &mut block_words);
- Output {
- input_chaining_value: self.chaining_value,
- block_words,
- counter: self.chunk_counter,
- block_len: self.block_len as u32,
- flags: self.flags | self.start_flag() | CHUNK_END,
- }
- }
-}
-
-fn parent_output(
- left_child_cv: [u32; 8],
- right_child_cv: [u32; 8],
- key_words: [u32; 8],
- flags: u32,
-) -> Output {
- let mut block_words = [0; 16];
- block_words[..8].copy_from_slice(&left_child_cv);
- block_words[8..].copy_from_slice(&right_child_cv);
- Output {
- input_chaining_value: key_words,
- block_words,
- counter: 0, // Always 0 for parent nodes.
- block_len: BLOCK_LEN as u32, // Always BLOCK_LEN (64) for parent nodes.
- flags: PARENT | flags,
- }
-}
-
-fn parent_cv(
- left_child_cv: [u32; 8],
- right_child_cv: [u32; 8],
- key_words: [u32; 8],
- flags: u32,
-) -> [u32; 8] {
- parent_output(left_child_cv, right_child_cv, key_words, flags).chaining_value()
-}
-
-/// An incremental hasher that can accept any number of writes.
-pub struct Hasher {
- chunk_state: ChunkState,
- key_words: [u32; 8],
- cv_stack: [[u32; 8]; 54], // Space for 54 subtree chaining values:
- cv_stack_len: u8, // 2^54 * CHUNK_LEN = 2^64
- flags: u32,
-}
-
-impl Hasher {
- fn new_internal(key_words: [u32; 8], flags: u32) -> Self {
- Self {
- chunk_state: ChunkState::new(key_words, 0, flags),
- key_words,
- cv_stack: [[0; 8]; 54],
- cv_stack_len: 0,
- flags,
- }
- }
-
- /// Construct a new `Hasher` for the regular hash function.
- pub fn new() -> Self {
- Self::new_internal(IV, 0)
- }
-
- /// Construct a new `Hasher` for the keyed hash function.
- pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
- let mut key_words = [0; 8];
- words_from_little_endian_bytes(key, &mut key_words);
- Self::new_internal(key_words, KEYED_HASH)
- }
-
- /// Construct a new `Hasher` for the key derivation function. The context
- /// string should be hardcoded, globally unique, and application-specific.
- pub fn new_derive_key(context: &str) -> Self {
- let mut context_hasher = Self::new_internal(IV, DERIVE_KEY_CONTEXT);
- context_hasher.update(context.as_bytes());
- let mut context_key = [0; KEY_LEN];
- context_hasher.finalize(&mut context_key);
- let mut context_key_words = [0; 8];
- words_from_little_endian_bytes(&context_key, &mut context_key_words);
- Self::new_internal(context_key_words, DERIVE_KEY_MATERIAL)
- }
-
- fn push_stack(&mut self, cv: [u32; 8]) {
- self.cv_stack[self.cv_stack_len as usize] = cv;
- self.cv_stack_len += 1;
- }
-
- fn pop_stack(&mut self) -> [u32; 8] {
- self.cv_stack_len -= 1;
- self.cv_stack[self.cv_stack_len as usize]
- }
-
- // Section 5.1.2 of the BLAKE3 spec explains this algorithm in more detail.
- fn add_chunk_chaining_value(&mut self, mut new_cv: [u32; 8], mut total_chunks: u64) {
- // This chunk might complete some subtrees. For each completed subtree,
- // its left child will be the current top entry in the CV stack, and
- // its right child will be the current value of `new_cv`. Pop each left
- // child off the stack, merge it with `new_cv`, and overwrite `new_cv`
- // with the result. After all these merges, push the final value of
- // `new_cv` onto the stack. The number of completed subtrees is given
- // by the number of trailing 0-bits in the new total number of chunks.
- while total_chunks & 1 == 0 {
- new_cv = parent_cv(self.pop_stack(), new_cv, self.key_words, self.flags);
- total_chunks >>= 1;
- }
- self.push_stack(new_cv);
- }
-
- /// Add input to the hash state. This can be called any number of times.
- pub fn update(&mut self, mut input: &[u8]) {
- while !input.is_empty() {
- // If the current chunk is complete, finalize it and reset the
- // chunk state. More input is coming, so this chunk is not ROOT.
- if self.chunk_state.len() == CHUNK_LEN {
- let chunk_cv = self.chunk_state.output().chaining_value();
- let total_chunks = self.chunk_state.chunk_counter + 1;
- self.add_chunk_chaining_value(chunk_cv, total_chunks);
- self.chunk_state = ChunkState::new(self.key_words, total_chunks, self.flags);
- }
-
- // Compress input bytes into the current chunk state.
- let want = CHUNK_LEN - self.chunk_state.len();
- let take = min(want, input.len());
- self.chunk_state.update(&input[..take]);
- input = &input[take..];
- }
- }
-
- /// Finalize the hash and write any number of output bytes.
- pub fn finalize(&self, out_slice: &mut [u8]) {
- // Starting with the Output from the current chunk, compute all the
- // parent chaining values along the right edge of the tree, until we
- // have the root Output.
- let mut output = self.chunk_state.output();
- let mut parent_nodes_remaining = self.cv_stack_len as usize;
- while parent_nodes_remaining > 0 {
- parent_nodes_remaining -= 1;
- output = parent_output(
- self.cv_stack[parent_nodes_remaining],
- output.chaining_value(),
- self.key_words,
- self.flags,
- );
- }
- output.root_output_bytes(out_slice);
- }
-}
+++ /dev/null
-#[cfg(target_arch = "x86")]
-use core::arch::x86::*;
-#[cfg(target_arch = "x86_64")]
-use core::arch::x86_64::*;
-
-use crate::slice::{array_chunks_mut, split_array_mut};
-
-use super::{
- counter_high, counter_low, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE, OUT_LEN,
-};
-
-pub const DEGREE: usize = 8;
-
-#[inline(always)]
-unsafe fn loadu(src: *const u8) -> __m256i {
- // This is an unaligned load, so the pointer cast is allowed.
- _mm256_loadu_si256(src as *const __m256i)
-}
-
-#[inline(always)]
-unsafe fn storeu(src: __m256i, dest: *mut u8) {
- // This is an unaligned store, so the pointer cast is allowed.
- _mm256_storeu_si256(dest as *mut __m256i, src)
-}
-
-#[inline(always)]
-unsafe fn add(a: __m256i, b: __m256i) -> __m256i {
- _mm256_add_epi32(a, b)
-}
-
-#[inline(always)]
-unsafe fn xor(a: __m256i, b: __m256i) -> __m256i {
- _mm256_xor_si256(a, b)
-}
-
-#[inline(always)]
-unsafe fn set1(x: u32) -> __m256i {
- _mm256_set1_epi32(x as i32)
-}
-
-#[inline(always)]
-unsafe fn set8(a: u32, b: u32, c: u32, d: u32, e: u32, f: u32, g: u32, h: u32) -> __m256i {
- _mm256_setr_epi32(
- a as i32, b as i32, c as i32, d as i32, e as i32, f as i32, g as i32, h as i32,
- )
-}
-
-// These rotations are the "simple/shifts version". For the
-// "complicated/shuffles version", see
-// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66.
-// For a discussion of the tradeoffs, see
-// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug
-// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better
-// on recent x86 chips.
-
-#[inline(always)]
-unsafe fn rot16(x: __m256i) -> __m256i {
- _mm256_or_si256(_mm256_srli_epi32(x, 16), _mm256_slli_epi32(x, 32 - 16))
-}
-
-#[inline(always)]
-unsafe fn rot12(x: __m256i) -> __m256i {
- _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12))
-}
-
-#[inline(always)]
-unsafe fn rot8(x: __m256i) -> __m256i {
- _mm256_or_si256(_mm256_srli_epi32(x, 8), _mm256_slli_epi32(x, 32 - 8))
-}
-
-#[inline(always)]
-unsafe fn rot7(x: __m256i) -> __m256i {
- _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7))
-}
-
-#[inline(always)]
-unsafe fn round(v: &mut [__m256i; 16], m: &[__m256i; 16], r: usize) {
- v[0] = add(v[0], m[MSG_SCHEDULE[r][0]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][2]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][4]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][6]]);
- v[0] = add(v[0], v[4]);
- v[1] = add(v[1], v[5]);
- v[2] = add(v[2], v[6]);
- v[3] = add(v[3], v[7]);
- v[12] = xor(v[12], v[0]);
- v[13] = xor(v[13], v[1]);
- v[14] = xor(v[14], v[2]);
- v[15] = xor(v[15], v[3]);
- v[12] = rot16(v[12]);
- v[13] = rot16(v[13]);
- v[14] = rot16(v[14]);
- v[15] = rot16(v[15]);
- v[8] = add(v[8], v[12]);
- v[9] = add(v[9], v[13]);
- v[10] = add(v[10], v[14]);
- v[11] = add(v[11], v[15]);
- v[4] = xor(v[4], v[8]);
- v[5] = xor(v[5], v[9]);
- v[6] = xor(v[6], v[10]);
- v[7] = xor(v[7], v[11]);
- v[4] = rot12(v[4]);
- v[5] = rot12(v[5]);
- v[6] = rot12(v[6]);
- v[7] = rot12(v[7]);
- v[0] = add(v[0], m[MSG_SCHEDULE[r][1]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][3]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][5]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][7]]);
- v[0] = add(v[0], v[4]);
- v[1] = add(v[1], v[5]);
- v[2] = add(v[2], v[6]);
- v[3] = add(v[3], v[7]);
- v[12] = xor(v[12], v[0]);
- v[13] = xor(v[13], v[1]);
- v[14] = xor(v[14], v[2]);
- v[15] = xor(v[15], v[3]);
- v[12] = rot8(v[12]);
- v[13] = rot8(v[13]);
- v[14] = rot8(v[14]);
- v[15] = rot8(v[15]);
- v[8] = add(v[8], v[12]);
- v[9] = add(v[9], v[13]);
- v[10] = add(v[10], v[14]);
- v[11] = add(v[11], v[15]);
- v[4] = xor(v[4], v[8]);
- v[5] = xor(v[5], v[9]);
- v[6] = xor(v[6], v[10]);
- v[7] = xor(v[7], v[11]);
- v[4] = rot7(v[4]);
- v[5] = rot7(v[5]);
- v[6] = rot7(v[6]);
- v[7] = rot7(v[7]);
-
- v[0] = add(v[0], m[MSG_SCHEDULE[r][8]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][10]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][12]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][14]]);
- v[0] = add(v[0], v[5]);
- v[1] = add(v[1], v[6]);
- v[2] = add(v[2], v[7]);
- v[3] = add(v[3], v[4]);
- v[15] = xor(v[15], v[0]);
- v[12] = xor(v[12], v[1]);
- v[13] = xor(v[13], v[2]);
- v[14] = xor(v[14], v[3]);
- v[15] = rot16(v[15]);
- v[12] = rot16(v[12]);
- v[13] = rot16(v[13]);
- v[14] = rot16(v[14]);
- v[10] = add(v[10], v[15]);
- v[11] = add(v[11], v[12]);
- v[8] = add(v[8], v[13]);
- v[9] = add(v[9], v[14]);
- v[5] = xor(v[5], v[10]);
- v[6] = xor(v[6], v[11]);
- v[7] = xor(v[7], v[8]);
- v[4] = xor(v[4], v[9]);
- v[5] = rot12(v[5]);
- v[6] = rot12(v[6]);
- v[7] = rot12(v[7]);
- v[4] = rot12(v[4]);
- v[0] = add(v[0], m[MSG_SCHEDULE[r][9]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][11]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][13]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][15]]);
- v[0] = add(v[0], v[5]);
- v[1] = add(v[1], v[6]);
- v[2] = add(v[2], v[7]);
- v[3] = add(v[3], v[4]);
- v[15] = xor(v[15], v[0]);
- v[12] = xor(v[12], v[1]);
- v[13] = xor(v[13], v[2]);
- v[14] = xor(v[14], v[3]);
- v[15] = rot8(v[15]);
- v[12] = rot8(v[12]);
- v[13] = rot8(v[13]);
- v[14] = rot8(v[14]);
- v[10] = add(v[10], v[15]);
- v[11] = add(v[11], v[12]);
- v[8] = add(v[8], v[13]);
- v[9] = add(v[9], v[14]);
- v[5] = xor(v[5], v[10]);
- v[6] = xor(v[6], v[11]);
- v[7] = xor(v[7], v[8]);
- v[4] = xor(v[4], v[9]);
- v[5] = rot7(v[5]);
- v[6] = rot7(v[6]);
- v[7] = rot7(v[7]);
- v[4] = rot7(v[4]);
-}
-
-#[inline(always)]
-unsafe fn interleave128(a: __m256i, b: __m256i) -> (__m256i, __m256i) {
- (
- _mm256_permute2x128_si256(a, b, 0x20),
- _mm256_permute2x128_si256(a, b, 0x31),
- )
-}
-
-// There are several ways to do a transposition. We could do it naively, with 8 separate
-// _mm256_set_epi32 instructions, referencing each of the 32 words explicitly. Or we could copy
-// the vecs into contiguous storage and then use gather instructions. This third approach is to use
-// a series of unpack instructions to interleave the vectors. In my benchmarks, interleaving is the
-// fastest approach. To test this, run `cargo +nightly bench --bench libtest load_8` in the
-// https://github.com/oconnor663/bao_experiments repo.
-#[inline(always)]
-unsafe fn transpose_vecs(vecs: &mut [__m256i; DEGREE]) {
- // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high is 22/33/66/77.
- let ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
- let ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
- let cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
- let cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
- let ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
- let ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
- let gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
- let gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
-
- // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is 11/33.
- let abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
- let abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
- let abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
- let abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
- let efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
- let efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
- let efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
- let efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
-
- // Interleave 128-bit lanes.
- let (abcdefgh_0, abcdefgh_4) = interleave128(abcd_04, efgh_04);
- let (abcdefgh_1, abcdefgh_5) = interleave128(abcd_15, efgh_15);
- let (abcdefgh_2, abcdefgh_6) = interleave128(abcd_26, efgh_26);
- let (abcdefgh_3, abcdefgh_7) = interleave128(abcd_37, efgh_37);
-
- vecs[0] = abcdefgh_0;
- vecs[1] = abcdefgh_1;
- vecs[2] = abcdefgh_2;
- vecs[3] = abcdefgh_3;
- vecs[4] = abcdefgh_4;
- vecs[5] = abcdefgh_5;
- vecs[6] = abcdefgh_6;
- vecs[7] = abcdefgh_7;
-}
-
-#[inline(always)]
-unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [__m256i; 16] {
- let mut vecs = [
- loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[4].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[5].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[6].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[7].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[4].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[5].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[6].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[7].add(block_offset + 1 * 4 * DEGREE)),
- ];
- for prefetch in inputs.iter().take(DEGREE) {
- _mm_prefetch(prefetch.add(block_offset + 256) as *const i8, _MM_HINT_T0);
- }
- for square in array_chunks_mut(&mut vecs) {
- transpose_vecs(square);
- }
- vecs
-}
-
-#[inline(always)]
-unsafe fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (__m256i, __m256i) {
- let mask = if increment_counter.yes() { !0 } else { 0 };
- (
- set8(
- counter_low(counter + (mask & 0)),
- counter_low(counter + (mask & 1)),
- counter_low(counter + (mask & 2)),
- counter_low(counter + (mask & 3)),
- counter_low(counter + (mask & 4)),
- counter_low(counter + (mask & 5)),
- counter_low(counter + (mask & 6)),
- counter_low(counter + (mask & 7)),
- ),
- set8(
- counter_high(counter + (mask & 0)),
- counter_high(counter + (mask & 1)),
- counter_high(counter + (mask & 2)),
- counter_high(counter + (mask & 3)),
- counter_high(counter + (mask & 4)),
- counter_high(counter + (mask & 5)),
- counter_high(counter + (mask & 6)),
- counter_high(counter + (mask & 7)),
- ),
- )
-}
-
-#[target_feature(enable = "avx2")]
-pub unsafe fn hash8(
- inputs: &[*const u8; DEGREE],
- blocks: usize,
- key: &CVWords,
- counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut [u8; DEGREE * OUT_LEN],
-) {
- let mut h_vecs = [
- set1(key[0]),
- set1(key[1]),
- set1(key[2]),
- set1(key[3]),
- set1(key[4]),
- set1(key[5]),
- set1(key[6]),
- set1(key[7]),
- ];
- let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter);
- let mut block_flags = flags | flags_start;
-
- for block in 0..blocks {
- if block + 1 == blocks {
- block_flags |= flags_end;
- }
- let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only
- let block_flags_vec = set1(block_flags as u32);
- let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN);
-
- // The transposed compression function. Note that inlining this
- // manually here improves compile times by a lot, compared to factoring
- // it out into its own function and making it #[inline(always)]. Just
- // guessing, it might have something to do with loop unrolling.
- let mut v = [
- h_vecs[0],
- h_vecs[1],
- h_vecs[2],
- h_vecs[3],
- h_vecs[4],
- h_vecs[5],
- h_vecs[6],
- h_vecs[7],
- set1(IV[0]),
- set1(IV[1]),
- set1(IV[2]),
- set1(IV[3]),
- counter_low_vec,
- counter_high_vec,
- block_len_vec,
- block_flags_vec,
- ];
- round(&mut v, &msg_vecs, 0);
- round(&mut v, &msg_vecs, 1);
- round(&mut v, &msg_vecs, 2);
- round(&mut v, &msg_vecs, 3);
- round(&mut v, &msg_vecs, 4);
- round(&mut v, &msg_vecs, 5);
- round(&mut v, &msg_vecs, 6);
- h_vecs[0] = xor(v[0], v[8]);
- h_vecs[1] = xor(v[1], v[9]);
- h_vecs[2] = xor(v[2], v[10]);
- h_vecs[3] = xor(v[3], v[11]);
- h_vecs[4] = xor(v[4], v[12]);
- h_vecs[5] = xor(v[5], v[13]);
- h_vecs[6] = xor(v[6], v[14]);
- h_vecs[7] = xor(v[7], v[15]);
-
- block_flags = flags;
- }
-
- transpose_vecs(&mut h_vecs);
- storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE));
- storeu(h_vecs[1], out.as_mut_ptr().add(1 * 4 * DEGREE));
- storeu(h_vecs[2], out.as_mut_ptr().add(2 * 4 * DEGREE));
- storeu(h_vecs[3], out.as_mut_ptr().add(3 * 4 * DEGREE));
- storeu(h_vecs[4], out.as_mut_ptr().add(4 * 4 * DEGREE));
- storeu(h_vecs[5], out.as_mut_ptr().add(5 * 4 * DEGREE));
- storeu(h_vecs[6], out.as_mut_ptr().add(6 * 4 * DEGREE));
- storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE));
-}
-
-#[target_feature(enable = "avx2")]
-pub unsafe fn hash_many<const N: usize>(
- mut inputs: &[&[u8; N]],
- key: &CVWords,
- mut counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- mut output: &mut [u8],
-) {
- debug_assert!(output.len() >= inputs.len() * OUT_LEN, "out too short");
- while inputs.len() >= DEGREE && output.len() >= DEGREE * OUT_LEN {
- // Safe because the layout of arrays is guaranteed, and because the
- // `blocks` count is determined statically from the argument type.
- let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]);
- let blocks = N / BLOCK_LEN;
- let (out, rem) = split_array_mut(output);
- hash8(
- input_ptrs,
- blocks,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- out,
- );
- if increment_counter.yes() {
- counter += DEGREE as u64;
- }
- inputs = &inputs[DEGREE..];
- output = rem;
- }
- super::sse41::hash_many(
- inputs,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- output,
- );
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
- use crate::blake3::{avx2::transpose_vecs, platform, test::test_hash_many_fn};
-
- #[test]
- fn test_transpose() {
- if !platform::avx2_detected() {
- return;
- }
-
- #[target_feature(enable = "avx2")]
- unsafe fn transpose_wrapper(vecs: &mut [__m256i; DEGREE]) {
- transpose_vecs(vecs);
- }
-
- let mut matrix = [[0 as u32; DEGREE]; DEGREE];
- for i in 0..DEGREE {
- for j in 0..DEGREE {
- matrix[i][j] = (i * DEGREE + j) as u32;
- }
- }
-
- unsafe {
- let mut vecs: [__m256i; DEGREE] = core::mem::transmute(matrix);
- transpose_wrapper(&mut vecs);
- matrix = core::mem::transmute(vecs);
- }
-
- for i in 0..DEGREE {
- for j in 0..DEGREE {
- // Reversed indexes from above.
- assert_eq!(matrix[j][i], (i * DEGREE + j) as u32);
- }
- }
- }
-
- #[test]
- fn test_hash_many() {
- if !platform::avx2_detected() {
- return;
- }
- test_hash_many_fn(hash_many, hash_many);
- }
-}
+++ /dev/null
-#[cfg(target_arch = "x86")]
-use core::arch::x86::*;
-#[cfg(target_arch = "x86_64")]
-use core::arch::x86_64::*;
-
-use crate::slice::{array_chunks_mut, split_array_mut};
-
-use super::{
- counter_high, counter_low, CVBytes, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE,
- OUT_LEN,
-};
-
-pub const DEGREE: usize = 4;
-
-#[inline(always)]
-unsafe fn loadu(src: *const u8) -> __m128i {
- // This is an unaligned load, so the pointer cast is allowed.
- _mm_loadu_si128(src as *const __m128i)
-}
-
-#[inline(always)]
-unsafe fn storeu(src: __m128i, dest: *mut u8) {
- // This is an unaligned store, so the pointer cast is allowed.
- _mm_storeu_si128(dest as *mut __m128i, src)
-}
-
-#[inline(always)]
-unsafe fn add(a: __m128i, b: __m128i) -> __m128i {
- _mm_add_epi32(a, b)
-}
-
-#[inline(always)]
-unsafe fn xor(a: __m128i, b: __m128i) -> __m128i {
- _mm_xor_si128(a, b)
-}
-
-#[inline(always)]
-unsafe fn set1(x: u32) -> __m128i {
- _mm_set1_epi32(x as i32)
-}
-
-#[inline(always)]
-unsafe fn set4(a: u32, b: u32, c: u32, d: u32) -> __m128i {
- _mm_setr_epi32(a as i32, b as i32, c as i32, d as i32)
-}
-
-// These rotations are the "simple/shifts version". For the
-// "complicated/shuffles version", see
-// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66.
-// For a discussion of the tradeoffs, see
-// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug
-// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better
-// on recent x86 chips.
-
-#[inline(always)]
-unsafe fn rot16(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 16), _mm_slli_epi32(a, 32 - 16))
-}
-
-#[inline(always)]
-unsafe fn rot12(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 12), _mm_slli_epi32(a, 32 - 12))
-}
-
-#[inline(always)]
-unsafe fn rot8(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 8), _mm_slli_epi32(a, 32 - 8))
-}
-
-#[inline(always)]
-unsafe fn rot7(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 7), _mm_slli_epi32(a, 32 - 7))
-}
-
-#[inline(always)]
-unsafe fn g1(
- row0: &mut __m128i,
- row1: &mut __m128i,
- row2: &mut __m128i,
- row3: &mut __m128i,
- m: __m128i,
-) {
- *row0 = add(add(*row0, m), *row1);
- *row3 = xor(*row3, *row0);
- *row3 = rot16(*row3);
- *row2 = add(*row2, *row3);
- *row1 = xor(*row1, *row2);
- *row1 = rot12(*row1);
-}
-
-#[inline(always)]
-unsafe fn g2(
- row0: &mut __m128i,
- row1: &mut __m128i,
- row2: &mut __m128i,
- row3: &mut __m128i,
- m: __m128i,
-) {
- *row0 = add(add(*row0, m), *row1);
- *row3 = xor(*row3, *row0);
- *row3 = rot8(*row3);
- *row2 = add(*row2, *row3);
- *row1 = xor(*row1, *row2);
- *row1 = rot7(*row1);
-}
-
-// Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479.
-macro_rules! _MM_SHUFFLE {
- ($z:expr, $y:expr, $x:expr, $w:expr) => {
- ($z << 6) | ($y << 4) | ($x << 2) | $w
- };
-}
-
-macro_rules! shuffle2 {
- ($a:expr, $b:expr, $c:expr) => {
- _mm_castps_si128(_mm_shuffle_ps(
- _mm_castsi128_ps($a),
- _mm_castsi128_ps($b),
- $c,
- ))
- };
-}
-
-// Note the optimization here of leaving row1 as the unrotated row, rather than
-// row0. All the message loads below are adjusted to compensate for this. See
-// discussion at https://github.com/sneves/blake2-avx2/pull/4
-#[inline(always)]
-unsafe fn diagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
- *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(2, 1, 0, 3));
- *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
- *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(0, 3, 2, 1));
-}
-
-#[inline(always)]
-unsafe fn undiagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
- *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(0, 3, 2, 1));
- *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
- *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(2, 1, 0, 3));
-}
-
-#[inline(always)]
-unsafe fn blend_epi16(a: __m128i, b: __m128i, imm8: i32) -> __m128i {
- let bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
- let mut mask = _mm_set1_epi16(imm8 as i16);
- mask = _mm_and_si128(mask, bits);
- mask = _mm_cmpeq_epi16(mask, bits);
- _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a))
-}
-
-#[inline(always)]
-unsafe fn compress_pre(
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) -> [__m128i; 4] {
- let row0 = &mut loadu(cv.as_ptr().add(0) as *const u8);
- let row1 = &mut loadu(cv.as_ptr().add(4) as *const u8);
- let row2 = &mut set4(IV[0], IV[1], IV[2], IV[3]);
- let row3 = &mut set4(
- counter_low(counter),
- counter_high(counter),
- block_len as u32,
- flags as u32,
- );
-
- let mut m0 = loadu(block.as_ptr().add(0 * 4 * DEGREE));
- let mut m1 = loadu(block.as_ptr().add(1 * 4 * DEGREE));
- let mut m2 = loadu(block.as_ptr().add(2 * 4 * DEGREE));
- let mut m3 = loadu(block.as_ptr().add(3 * 4 * DEGREE));
-
- let mut t0;
- let mut t1;
- let mut t2;
- let mut t3;
- let mut tt;
-
- // Round 1. The first round permutes the message words from the original
- // input order, into the groups that get mixed in parallel.
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(2, 0, 2, 0)); // 6 4 2 0
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 3, 1)); // 7 5 3 1
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = shuffle2!(m2, m3, _MM_SHUFFLE!(2, 0, 2, 0)); // 14 12 10 8
- t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE!(2, 1, 0, 3)); // 12 10 8 14
- g1(row0, row1, row2, row3, t2);
- t3 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 1, 3, 1)); // 15 13 11 9
- t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE!(2, 1, 0, 3)); // 13 11 9 15
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 2. This round and all following rounds apply a fixed permutation
- // to the message words from the round before.
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 3
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 4
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 5
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 6
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 7
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
-
- [*row0, *row1, *row2, *row3]
-}
-
-#[target_feature(enable = "sse2")]
-pub unsafe fn compress_in_place(
- cv: &mut CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) {
- let [row0, row1, row2, row3] = compress_pre(cv, block, block_len, counter, flags);
- storeu(xor(row0, row2), cv.as_mut_ptr().add(0) as *mut u8);
- storeu(xor(row1, row3), cv.as_mut_ptr().add(4) as *mut u8);
-}
-
-#[target_feature(enable = "sse2")]
-pub unsafe fn compress_xof(
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) -> [u8; 64] {
- let [mut row0, mut row1, mut row2, mut row3] =
- compress_pre(cv, block, block_len, counter, flags);
- row0 = xor(row0, row2);
- row1 = xor(row1, row3);
- row2 = xor(row2, loadu(cv.as_ptr().add(0) as *const u8));
- row3 = xor(row3, loadu(cv.as_ptr().add(4) as *const u8));
- core::mem::transmute([row0, row1, row2, row3])
-}
-
-#[inline(always)]
-unsafe fn round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize) {
- v[0] = add(v[0], m[MSG_SCHEDULE[r][0]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][2]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][4]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][6]]);
- v[0] = add(v[0], v[4]);
- v[1] = add(v[1], v[5]);
- v[2] = add(v[2], v[6]);
- v[3] = add(v[3], v[7]);
- v[12] = xor(v[12], v[0]);
- v[13] = xor(v[13], v[1]);
- v[14] = xor(v[14], v[2]);
- v[15] = xor(v[15], v[3]);
- v[12] = rot16(v[12]);
- v[13] = rot16(v[13]);
- v[14] = rot16(v[14]);
- v[15] = rot16(v[15]);
- v[8] = add(v[8], v[12]);
- v[9] = add(v[9], v[13]);
- v[10] = add(v[10], v[14]);
- v[11] = add(v[11], v[15]);
- v[4] = xor(v[4], v[8]);
- v[5] = xor(v[5], v[9]);
- v[6] = xor(v[6], v[10]);
- v[7] = xor(v[7], v[11]);
- v[4] = rot12(v[4]);
- v[5] = rot12(v[5]);
- v[6] = rot12(v[6]);
- v[7] = rot12(v[7]);
- v[0] = add(v[0], m[MSG_SCHEDULE[r][1]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][3]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][5]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][7]]);
- v[0] = add(v[0], v[4]);
- v[1] = add(v[1], v[5]);
- v[2] = add(v[2], v[6]);
- v[3] = add(v[3], v[7]);
- v[12] = xor(v[12], v[0]);
- v[13] = xor(v[13], v[1]);
- v[14] = xor(v[14], v[2]);
- v[15] = xor(v[15], v[3]);
- v[12] = rot8(v[12]);
- v[13] = rot8(v[13]);
- v[14] = rot8(v[14]);
- v[15] = rot8(v[15]);
- v[8] = add(v[8], v[12]);
- v[9] = add(v[9], v[13]);
- v[10] = add(v[10], v[14]);
- v[11] = add(v[11], v[15]);
- v[4] = xor(v[4], v[8]);
- v[5] = xor(v[5], v[9]);
- v[6] = xor(v[6], v[10]);
- v[7] = xor(v[7], v[11]);
- v[4] = rot7(v[4]);
- v[5] = rot7(v[5]);
- v[6] = rot7(v[6]);
- v[7] = rot7(v[7]);
-
- v[0] = add(v[0], m[MSG_SCHEDULE[r][8]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][10]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][12]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][14]]);
- v[0] = add(v[0], v[5]);
- v[1] = add(v[1], v[6]);
- v[2] = add(v[2], v[7]);
- v[3] = add(v[3], v[4]);
- v[15] = xor(v[15], v[0]);
- v[12] = xor(v[12], v[1]);
- v[13] = xor(v[13], v[2]);
- v[14] = xor(v[14], v[3]);
- v[15] = rot16(v[15]);
- v[12] = rot16(v[12]);
- v[13] = rot16(v[13]);
- v[14] = rot16(v[14]);
- v[10] = add(v[10], v[15]);
- v[11] = add(v[11], v[12]);
- v[8] = add(v[8], v[13]);
- v[9] = add(v[9], v[14]);
- v[5] = xor(v[5], v[10]);
- v[6] = xor(v[6], v[11]);
- v[7] = xor(v[7], v[8]);
- v[4] = xor(v[4], v[9]);
- v[5] = rot12(v[5]);
- v[6] = rot12(v[6]);
- v[7] = rot12(v[7]);
- v[4] = rot12(v[4]);
- v[0] = add(v[0], m[MSG_SCHEDULE[r][9]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][11]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][13]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][15]]);
- v[0] = add(v[0], v[5]);
- v[1] = add(v[1], v[6]);
- v[2] = add(v[2], v[7]);
- v[3] = add(v[3], v[4]);
- v[15] = xor(v[15], v[0]);
- v[12] = xor(v[12], v[1]);
- v[13] = xor(v[13], v[2]);
- v[14] = xor(v[14], v[3]);
- v[15] = rot8(v[15]);
- v[12] = rot8(v[12]);
- v[13] = rot8(v[13]);
- v[14] = rot8(v[14]);
- v[10] = add(v[10], v[15]);
- v[11] = add(v[11], v[12]);
- v[8] = add(v[8], v[13]);
- v[9] = add(v[9], v[14]);
- v[5] = xor(v[5], v[10]);
- v[6] = xor(v[6], v[11]);
- v[7] = xor(v[7], v[8]);
- v[4] = xor(v[4], v[9]);
- v[5] = rot7(v[5]);
- v[6] = rot7(v[6]);
- v[7] = rot7(v[7]);
- v[4] = rot7(v[4]);
-}
-
-#[inline(always)]
-unsafe fn transpose_vecs(vecs: &mut [__m128i; DEGREE]) {
- // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
- // 22/33. Note that this doesn't split the vector into two lanes, as the
- // AVX2 counterparts do.
- let ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
- let ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
- let cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
- let cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
-
- // Interleave 64-bit lanes.
- let abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
- let abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
- let abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
- let abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
-
- vecs[0] = abcd_0;
- vecs[1] = abcd_1;
- vecs[2] = abcd_2;
- vecs[3] = abcd_3;
-}
-
-#[inline(always)]
-unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [__m128i; 16] {
- let mut vecs = [
- loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[0].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[0].add(block_offset + 3 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 3 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 3 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 3 * 4 * DEGREE)),
- ];
- for prefetch in inputs.iter().take(DEGREE) {
- _mm_prefetch(prefetch.add(block_offset + 256) as *const i8, _MM_HINT_T0);
- }
- for square in array_chunks_mut(&mut vecs) {
- transpose_vecs(square);
- }
- vecs
-}
-
-#[inline(always)]
-unsafe fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (__m128i, __m128i) {
- let mask = if increment_counter.yes() { !0 } else { 0 };
- (
- set4(
- counter_low(counter + (mask & 0)),
- counter_low(counter + (mask & 1)),
- counter_low(counter + (mask & 2)),
- counter_low(counter + (mask & 3)),
- ),
- set4(
- counter_high(counter + (mask & 0)),
- counter_high(counter + (mask & 1)),
- counter_high(counter + (mask & 2)),
- counter_high(counter + (mask & 3)),
- ),
- )
-}
-
-#[target_feature(enable = "sse2")]
-pub unsafe fn hash4(
- inputs: &[*const u8; DEGREE],
- blocks: usize,
- key: &CVWords,
- counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut [u8; DEGREE * OUT_LEN],
-) {
- let mut h_vecs = [
- set1(key[0]),
- set1(key[1]),
- set1(key[2]),
- set1(key[3]),
- set1(key[4]),
- set1(key[5]),
- set1(key[6]),
- set1(key[7]),
- ];
- let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter);
- let mut block_flags = flags | flags_start;
-
- for block in 0..blocks {
- if block + 1 == blocks {
- block_flags |= flags_end;
- }
- let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only
- let block_flags_vec = set1(block_flags as u32);
- let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN);
-
- // The transposed compression function. Note that inlining this
- // manually here improves compile times by a lot, compared to factoring
- // it out into its own function and making it #[inline(always)]. Just
- // guessing, it might have something to do with loop unrolling.
- let mut v = [
- h_vecs[0],
- h_vecs[1],
- h_vecs[2],
- h_vecs[3],
- h_vecs[4],
- h_vecs[5],
- h_vecs[6],
- h_vecs[7],
- set1(IV[0]),
- set1(IV[1]),
- set1(IV[2]),
- set1(IV[3]),
- counter_low_vec,
- counter_high_vec,
- block_len_vec,
- block_flags_vec,
- ];
- round(&mut v, &msg_vecs, 0);
- round(&mut v, &msg_vecs, 1);
- round(&mut v, &msg_vecs, 2);
- round(&mut v, &msg_vecs, 3);
- round(&mut v, &msg_vecs, 4);
- round(&mut v, &msg_vecs, 5);
- round(&mut v, &msg_vecs, 6);
- h_vecs[0] = xor(v[0], v[8]);
- h_vecs[1] = xor(v[1], v[9]);
- h_vecs[2] = xor(v[2], v[10]);
- h_vecs[3] = xor(v[3], v[11]);
- h_vecs[4] = xor(v[4], v[12]);
- h_vecs[5] = xor(v[5], v[13]);
- h_vecs[6] = xor(v[6], v[14]);
- h_vecs[7] = xor(v[7], v[15]);
-
- block_flags = flags;
- }
-
- for square in array_chunks_mut(&mut h_vecs) {
- transpose_vecs(square);
- }
-
- // The first four vecs now contain the first half of each output, and the
- // second four vecs contain the second half of each output.
- storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE));
- storeu(h_vecs[4], out.as_mut_ptr().add(1 * 4 * DEGREE));
- storeu(h_vecs[1], out.as_mut_ptr().add(2 * 4 * DEGREE));
- storeu(h_vecs[5], out.as_mut_ptr().add(3 * 4 * DEGREE));
- storeu(h_vecs[2], out.as_mut_ptr().add(4 * 4 * DEGREE));
- storeu(h_vecs[6], out.as_mut_ptr().add(5 * 4 * DEGREE));
- storeu(h_vecs[3], out.as_mut_ptr().add(6 * 4 * DEGREE));
- storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE));
-}
-
-#[target_feature(enable = "sse2")]
-unsafe fn hash1<const N: usize>(
- input: &[u8; N],
- key: &CVWords,
- counter: u64,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut CVBytes,
-) {
- debug_assert_eq!(N % BLOCK_LEN, 0, "uneven blocks");
- let mut cv = *key;
- let mut block_flags = flags | flags_start;
- let mut slice = &input[..];
- while slice.len() >= BLOCK_LEN {
- if slice.len() == BLOCK_LEN {
- block_flags |= flags_end;
- }
- compress_in_place(
- &mut cv,
- slice[0..BLOCK_LEN].try_into().unwrap(),
- BLOCK_LEN as u8,
- counter,
- block_flags,
- );
- block_flags = flags;
- slice = &slice[BLOCK_LEN..];
- }
- *out = core::mem::transmute(cv); // x86 is little-endian
-}
-
-#[target_feature(enable = "sse2")]
-pub unsafe fn hash_many<const N: usize>(
- mut inputs: &[&[u8; N]],
- key: &CVWords,
- mut counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- mut output: &mut [u8],
-) {
- debug_assert!(output.len() >= inputs.len() * OUT_LEN, "out too short");
- while inputs.len() >= DEGREE && output.len() >= DEGREE * OUT_LEN {
- // Safe because the layout of arrays is guaranteed, and because the
- // `blocks` count is determined statically from the argument type.
- let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]);
- let blocks = N / BLOCK_LEN;
-
- let (out, rem) = split_array_mut(output);
- hash4(
- input_ptrs,
- blocks,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- out,
- );
- if increment_counter.yes() {
- counter += DEGREE as u64;
- }
- inputs = &inputs[DEGREE..];
- output = rem;
- }
- for (&input, output) in inputs.iter().zip(array_chunks_mut(output)) {
- hash1(input, key, counter, flags, flags_start, flags_end, output);
- if increment_counter.yes() {
- counter += 1;
- }
- }
-}
-
-#[cfg(test)]
-mod test {
- use crate::blake3::{
- platform,
- test::{test_compress_fn, test_hash_many_fn},
- };
-
- use super::*;
-
- #[test]
- fn test_transpose() {
- if !platform::sse2_detected() {
- return;
- }
-
- #[target_feature(enable = "sse2")]
- unsafe fn transpose_wrapper(vecs: &mut [__m128i; DEGREE]) {
- transpose_vecs(vecs);
- }
-
- let mut matrix = [[0 as u32; DEGREE]; DEGREE];
- for i in 0..DEGREE {
- for j in 0..DEGREE {
- matrix[i][j] = (i * DEGREE + j) as u32;
- }
- }
-
- unsafe {
- let mut vecs: [__m128i; DEGREE] = core::mem::transmute(matrix);
- transpose_wrapper(&mut vecs);
- matrix = core::mem::transmute(vecs);
- }
-
- for i in 0..DEGREE {
- for j in 0..DEGREE {
- // Reversed indexes from above.
- assert_eq!(matrix[j][i], (i * DEGREE + j) as u32);
- }
- }
- }
-
- #[test]
- fn test_compress() {
- if !platform::sse2_detected() {
- return;
- }
- test_compress_fn(compress_in_place, compress_xof);
- }
-
- #[test]
- fn test_hash_many() {
- if !platform::sse2_detected() {
- return;
- }
- test_hash_many_fn(hash_many, hash_many);
- }
-}
+++ /dev/null
-#[cfg(target_arch = "x86")]
-use core::arch::x86::*;
-#[cfg(target_arch = "x86_64")]
-use core::arch::x86_64::*;
-
-use crate::slice::{array_chunks_mut, split_array_mut};
-
-use super::{
- counter_high, counter_low, CVBytes, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE,
- OUT_LEN,
-};
-
-pub const DEGREE: usize = 4;
-
-#[inline(always)]
-unsafe fn loadu(src: *const u8) -> __m128i {
- // This is an unaligned load, so the pointer cast is allowed.
- _mm_loadu_si128(src as *const __m128i)
-}
-
-#[inline(always)]
-unsafe fn storeu(src: __m128i, dest: *mut u8) {
- // This is an unaligned store, so the pointer cast is allowed.
- _mm_storeu_si128(dest as *mut __m128i, src)
-}
-
-#[inline(always)]
-unsafe fn add(a: __m128i, b: __m128i) -> __m128i {
- _mm_add_epi32(a, b)
-}
-
-#[inline(always)]
-unsafe fn xor(a: __m128i, b: __m128i) -> __m128i {
- _mm_xor_si128(a, b)
-}
-
-#[inline(always)]
-unsafe fn set1(x: u32) -> __m128i {
- _mm_set1_epi32(x as i32)
-}
-
-#[inline(always)]
-unsafe fn set4(a: u32, b: u32, c: u32, d: u32) -> __m128i {
- _mm_setr_epi32(a as i32, b as i32, c as i32, d as i32)
-}
-
-// These rotations are the "simple/shifts version". For the
-// "complicated/shuffles version", see
-// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66.
-// For a discussion of the tradeoffs, see
-// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug
-// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better
-// on recent x86 chips.
-
-#[inline(always)]
-unsafe fn rot16(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 16), _mm_slli_epi32(a, 32 - 16))
-}
-
-#[inline(always)]
-unsafe fn rot12(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 12), _mm_slli_epi32(a, 32 - 12))
-}
-
-#[inline(always)]
-unsafe fn rot8(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 8), _mm_slli_epi32(a, 32 - 8))
-}
-
-#[inline(always)]
-unsafe fn rot7(a: __m128i) -> __m128i {
- _mm_or_si128(_mm_srli_epi32(a, 7), _mm_slli_epi32(a, 32 - 7))
-}
-
-#[inline(always)]
-unsafe fn g1(
- row0: &mut __m128i,
- row1: &mut __m128i,
- row2: &mut __m128i,
- row3: &mut __m128i,
- m: __m128i,
-) {
- *row0 = add(add(*row0, m), *row1);
- *row3 = xor(*row3, *row0);
- *row3 = rot16(*row3);
- *row2 = add(*row2, *row3);
- *row1 = xor(*row1, *row2);
- *row1 = rot12(*row1);
-}
-
-#[inline(always)]
-unsafe fn g2(
- row0: &mut __m128i,
- row1: &mut __m128i,
- row2: &mut __m128i,
- row3: &mut __m128i,
- m: __m128i,
-) {
- *row0 = add(add(*row0, m), *row1);
- *row3 = xor(*row3, *row0);
- *row3 = rot8(*row3);
- *row2 = add(*row2, *row3);
- *row1 = xor(*row1, *row2);
- *row1 = rot7(*row1);
-}
-
-// Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479.
-macro_rules! _MM_SHUFFLE {
- ($z:expr, $y:expr, $x:expr, $w:expr) => {
- ($z << 6) | ($y << 4) | ($x << 2) | $w
- };
-}
-
-macro_rules! shuffle2 {
- ($a:expr, $b:expr, $c:expr) => {
- _mm_castps_si128(_mm_shuffle_ps(
- _mm_castsi128_ps($a),
- _mm_castsi128_ps($b),
- $c,
- ))
- };
-}
-
-// Note the optimization here of leaving row1 as the unrotated row, rather than
-// row0. All the message loads below are adjusted to compensate for this. See
-// discussion at https://github.com/sneves/blake2-avx2/pull/4
-#[inline(always)]
-unsafe fn diagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
- *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(2, 1, 0, 3));
- *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
- *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(0, 3, 2, 1));
-}
-
-#[inline(always)]
-unsafe fn undiagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
- *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(0, 3, 2, 1));
- *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
- *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(2, 1, 0, 3));
-}
-
-#[inline(always)]
-unsafe fn compress_pre(
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) -> [__m128i; 4] {
- let row0 = &mut loadu(cv.as_ptr().add(0) as *const u8);
- let row1 = &mut loadu(cv.as_ptr().add(4) as *const u8);
- let row2 = &mut set4(IV[0], IV[1], IV[2], IV[3]);
- let row3 = &mut set4(
- counter_low(counter),
- counter_high(counter),
- block_len as u32,
- flags as u32,
- );
-
- let mut m0 = loadu(block.as_ptr().add(0 * 4 * DEGREE));
- let mut m1 = loadu(block.as_ptr().add(1 * 4 * DEGREE));
- let mut m2 = loadu(block.as_ptr().add(2 * 4 * DEGREE));
- let mut m3 = loadu(block.as_ptr().add(3 * 4 * DEGREE));
-
- let mut t0;
- let mut t1;
- let mut t2;
- let mut t3;
- let mut tt;
-
- // Round 1. The first round permutes the message words from the original
- // input order, into the groups that get mixed in parallel.
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(2, 0, 2, 0)); // 6 4 2 0
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 3, 1)); // 7 5 3 1
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = shuffle2!(m2, m3, _MM_SHUFFLE!(2, 0, 2, 0)); // 14 12 10 8
- t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE!(2, 1, 0, 3)); // 12 10 8 14
- g1(row0, row1, row2, row3, t2);
- t3 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 1, 3, 1)); // 15 13 11 9
- t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE!(2, 1, 0, 3)); // 13 11 9 15
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 2. This round and all following rounds apply a fixed permutation
- // to the message words from the round before.
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = _mm_blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = _mm_blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 3
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = _mm_blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = _mm_blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 4
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = _mm_blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = _mm_blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 5
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = _mm_blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = _mm_blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 6
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = _mm_blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = _mm_blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
- m0 = t0;
- m1 = t1;
- m2 = t2;
- m3 = t3;
-
- // Round 7
- t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
- t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
- g1(row0, row1, row2, row3, t0);
- t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
- tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
- t1 = _mm_blend_epi16(tt, t1, 0xCC);
- g2(row0, row1, row2, row3, t1);
- diagonalize(row0, row2, row3);
- t2 = _mm_unpacklo_epi64(m3, m1);
- tt = _mm_blend_epi16(t2, m2, 0xC0);
- t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
- g1(row0, row1, row2, row3, t2);
- t3 = _mm_unpackhi_epi32(m1, m3);
- tt = _mm_unpacklo_epi32(m2, t3);
- t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
- g2(row0, row1, row2, row3, t3);
- undiagonalize(row0, row2, row3);
-
- [*row0, *row1, *row2, *row3]
-}
-
-#[target_feature(enable = "sse4.1")]
-pub unsafe fn compress_in_place(
- cv: &mut CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) {
- let [row0, row1, row2, row3] = compress_pre(cv, block, block_len, counter, flags);
- storeu(xor(row0, row2), cv.as_mut_ptr().add(0) as *mut u8);
- storeu(xor(row1, row3), cv.as_mut_ptr().add(4) as *mut u8);
-}
-
-#[target_feature(enable = "sse4.1")]
-pub unsafe fn compress_xof(
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) -> [u8; 64] {
- let [mut row0, mut row1, mut row2, mut row3] =
- compress_pre(cv, block, block_len, counter, flags);
- row0 = xor(row0, row2);
- row1 = xor(row1, row3);
- row2 = xor(row2, loadu(cv.as_ptr().add(0) as *const u8));
- row3 = xor(row3, loadu(cv.as_ptr().add(4) as *const u8));
- core::mem::transmute([row0, row1, row2, row3])
-}
-
-#[inline(always)]
-unsafe fn round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize) {
- v[0] = add(v[0], m[MSG_SCHEDULE[r][0]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][2]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][4]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][6]]);
- v[0] = add(v[0], v[4]);
- v[1] = add(v[1], v[5]);
- v[2] = add(v[2], v[6]);
- v[3] = add(v[3], v[7]);
- v[12] = xor(v[12], v[0]);
- v[13] = xor(v[13], v[1]);
- v[14] = xor(v[14], v[2]);
- v[15] = xor(v[15], v[3]);
- v[12] = rot16(v[12]);
- v[13] = rot16(v[13]);
- v[14] = rot16(v[14]);
- v[15] = rot16(v[15]);
- v[8] = add(v[8], v[12]);
- v[9] = add(v[9], v[13]);
- v[10] = add(v[10], v[14]);
- v[11] = add(v[11], v[15]);
- v[4] = xor(v[4], v[8]);
- v[5] = xor(v[5], v[9]);
- v[6] = xor(v[6], v[10]);
- v[7] = xor(v[7], v[11]);
- v[4] = rot12(v[4]);
- v[5] = rot12(v[5]);
- v[6] = rot12(v[6]);
- v[7] = rot12(v[7]);
- v[0] = add(v[0], m[MSG_SCHEDULE[r][1]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][3]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][5]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][7]]);
- v[0] = add(v[0], v[4]);
- v[1] = add(v[1], v[5]);
- v[2] = add(v[2], v[6]);
- v[3] = add(v[3], v[7]);
- v[12] = xor(v[12], v[0]);
- v[13] = xor(v[13], v[1]);
- v[14] = xor(v[14], v[2]);
- v[15] = xor(v[15], v[3]);
- v[12] = rot8(v[12]);
- v[13] = rot8(v[13]);
- v[14] = rot8(v[14]);
- v[15] = rot8(v[15]);
- v[8] = add(v[8], v[12]);
- v[9] = add(v[9], v[13]);
- v[10] = add(v[10], v[14]);
- v[11] = add(v[11], v[15]);
- v[4] = xor(v[4], v[8]);
- v[5] = xor(v[5], v[9]);
- v[6] = xor(v[6], v[10]);
- v[7] = xor(v[7], v[11]);
- v[4] = rot7(v[4]);
- v[5] = rot7(v[5]);
- v[6] = rot7(v[6]);
- v[7] = rot7(v[7]);
-
- v[0] = add(v[0], m[MSG_SCHEDULE[r][8]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][10]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][12]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][14]]);
- v[0] = add(v[0], v[5]);
- v[1] = add(v[1], v[6]);
- v[2] = add(v[2], v[7]);
- v[3] = add(v[3], v[4]);
- v[15] = xor(v[15], v[0]);
- v[12] = xor(v[12], v[1]);
- v[13] = xor(v[13], v[2]);
- v[14] = xor(v[14], v[3]);
- v[15] = rot16(v[15]);
- v[12] = rot16(v[12]);
- v[13] = rot16(v[13]);
- v[14] = rot16(v[14]);
- v[10] = add(v[10], v[15]);
- v[11] = add(v[11], v[12]);
- v[8] = add(v[8], v[13]);
- v[9] = add(v[9], v[14]);
- v[5] = xor(v[5], v[10]);
- v[6] = xor(v[6], v[11]);
- v[7] = xor(v[7], v[8]);
- v[4] = xor(v[4], v[9]);
- v[5] = rot12(v[5]);
- v[6] = rot12(v[6]);
- v[7] = rot12(v[7]);
- v[4] = rot12(v[4]);
- v[0] = add(v[0], m[MSG_SCHEDULE[r][9]]);
- v[1] = add(v[1], m[MSG_SCHEDULE[r][11]]);
- v[2] = add(v[2], m[MSG_SCHEDULE[r][13]]);
- v[3] = add(v[3], m[MSG_SCHEDULE[r][15]]);
- v[0] = add(v[0], v[5]);
- v[1] = add(v[1], v[6]);
- v[2] = add(v[2], v[7]);
- v[3] = add(v[3], v[4]);
- v[15] = xor(v[15], v[0]);
- v[12] = xor(v[12], v[1]);
- v[13] = xor(v[13], v[2]);
- v[14] = xor(v[14], v[3]);
- v[15] = rot8(v[15]);
- v[12] = rot8(v[12]);
- v[13] = rot8(v[13]);
- v[14] = rot8(v[14]);
- v[10] = add(v[10], v[15]);
- v[11] = add(v[11], v[12]);
- v[8] = add(v[8], v[13]);
- v[9] = add(v[9], v[14]);
- v[5] = xor(v[5], v[10]);
- v[6] = xor(v[6], v[11]);
- v[7] = xor(v[7], v[8]);
- v[4] = xor(v[4], v[9]);
- v[5] = rot7(v[5]);
- v[6] = rot7(v[6]);
- v[7] = rot7(v[7]);
- v[4] = rot7(v[4]);
-}
-
-#[inline(always)]
-unsafe fn transpose_vecs(vecs: &mut [__m128i; DEGREE]) {
- // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
- // 22/33. Note that this doesn't split the vector into two lanes, as the
- // AVX2 counterparts do.
- let ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
- let ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
- let cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
- let cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
-
- // Interleave 64-bit lanes.
- let abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
- let abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
- let abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
- let abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
-
- vecs[0] = abcd_0;
- vecs[1] = abcd_1;
- vecs[2] = abcd_2;
- vecs[3] = abcd_3;
-}
-
-#[inline(always)]
-unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [__m128i; 16] {
- let mut vecs = [
- loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)),
- loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)),
- loadu(inputs[0].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 2 * 4 * DEGREE)),
- loadu(inputs[0].add(block_offset + 3 * 4 * DEGREE)),
- loadu(inputs[1].add(block_offset + 3 * 4 * DEGREE)),
- loadu(inputs[2].add(block_offset + 3 * 4 * DEGREE)),
- loadu(inputs[3].add(block_offset + 3 * 4 * DEGREE)),
- ];
- for prefetch in inputs.iter().take(DEGREE) {
- _mm_prefetch(prefetch.add(block_offset + 256) as *const i8, _MM_HINT_T0);
- }
- for square in array_chunks_mut(&mut vecs) {
- transpose_vecs(square);
- }
- vecs
-}
-
-#[inline(always)]
-unsafe fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (__m128i, __m128i) {
- let mask = if increment_counter.yes() { !0 } else { 0 };
- (
- set4(
- counter_low(counter + (mask & 0)),
- counter_low(counter + (mask & 1)),
- counter_low(counter + (mask & 2)),
- counter_low(counter + (mask & 3)),
- ),
- set4(
- counter_high(counter + (mask & 0)),
- counter_high(counter + (mask & 1)),
- counter_high(counter + (mask & 2)),
- counter_high(counter + (mask & 3)),
- ),
- )
-}
-
-#[target_feature(enable = "sse4.1")]
-pub unsafe fn hash4(
- inputs: &[*const u8; DEGREE],
- blocks: usize,
- key: &CVWords,
- counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut [u8; DEGREE * OUT_LEN],
-) {
- let mut h_vecs = [
- set1(key[0]),
- set1(key[1]),
- set1(key[2]),
- set1(key[3]),
- set1(key[4]),
- set1(key[5]),
- set1(key[6]),
- set1(key[7]),
- ];
- let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter);
- let mut block_flags = flags | flags_start;
-
- for block in 0..blocks {
- if block + 1 == blocks {
- block_flags |= flags_end;
- }
- let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only
- let block_flags_vec = set1(block_flags as u32);
- let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN);
-
- // The transposed compression function. Note that inlining this
- // manually here improves compile times by a lot, compared to factoring
- // it out into its own function and making it #[inline(always)]. Just
- // guessing, it might have something to do with loop unrolling.
- let mut v = [
- h_vecs[0],
- h_vecs[1],
- h_vecs[2],
- h_vecs[3],
- h_vecs[4],
- h_vecs[5],
- h_vecs[6],
- h_vecs[7],
- set1(IV[0]),
- set1(IV[1]),
- set1(IV[2]),
- set1(IV[3]),
- counter_low_vec,
- counter_high_vec,
- block_len_vec,
- block_flags_vec,
- ];
- round(&mut v, &msg_vecs, 0);
- round(&mut v, &msg_vecs, 1);
- round(&mut v, &msg_vecs, 2);
- round(&mut v, &msg_vecs, 3);
- round(&mut v, &msg_vecs, 4);
- round(&mut v, &msg_vecs, 5);
- round(&mut v, &msg_vecs, 6);
- h_vecs[0] = xor(v[0], v[8]);
- h_vecs[1] = xor(v[1], v[9]);
- h_vecs[2] = xor(v[2], v[10]);
- h_vecs[3] = xor(v[3], v[11]);
- h_vecs[4] = xor(v[4], v[12]);
- h_vecs[5] = xor(v[5], v[13]);
- h_vecs[6] = xor(v[6], v[14]);
- h_vecs[7] = xor(v[7], v[15]);
-
- block_flags = flags;
- }
-
- for square in array_chunks_mut(&mut h_vecs) {
- transpose_vecs(square);
- }
-
- // The first four vecs now contain the first half of each output, and the
- // second four vecs contain the second half of each output.
- storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE));
- storeu(h_vecs[4], out.as_mut_ptr().add(1 * 4 * DEGREE));
- storeu(h_vecs[1], out.as_mut_ptr().add(2 * 4 * DEGREE));
- storeu(h_vecs[5], out.as_mut_ptr().add(3 * 4 * DEGREE));
- storeu(h_vecs[2], out.as_mut_ptr().add(4 * 4 * DEGREE));
- storeu(h_vecs[6], out.as_mut_ptr().add(5 * 4 * DEGREE));
- storeu(h_vecs[3], out.as_mut_ptr().add(6 * 4 * DEGREE));
- storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE));
-}
-
-#[target_feature(enable = "sse4.1")]
-unsafe fn hash1<const N: usize>(
- input: &[u8; N],
- key: &CVWords,
- counter: u64,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut CVBytes,
-) {
- debug_assert_eq!(N % BLOCK_LEN, 0, "uneven blocks");
- let mut cv = *key;
- let mut block_flags = flags | flags_start;
- let mut slice = &input[..];
- while slice.len() >= BLOCK_LEN {
- if slice.len() == BLOCK_LEN {
- block_flags |= flags_end;
- }
- compress_in_place(
- &mut cv,
- slice[0..BLOCK_LEN].try_into().unwrap(),
- BLOCK_LEN as u8,
- counter,
- block_flags,
- );
- block_flags = flags;
- slice = &slice[BLOCK_LEN..];
- }
- *out = core::mem::transmute(cv); // x86 is little-endian
-}
-
-#[target_feature(enable = "sse4.1")]
-pub unsafe fn hash_many<const N: usize>(
- mut inputs: &[&[u8; N]],
- key: &CVWords,
- mut counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- mut output: &mut [u8],
-) {
- debug_assert!(output.len() >= inputs.len() * OUT_LEN, "out too short");
- while inputs.len() >= DEGREE && output.len() >= DEGREE * OUT_LEN {
- // Safe because the layout of arrays is guaranteed, and because the
- // `blocks` count is determined statically from the argument type.
- let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]);
- let blocks = N / BLOCK_LEN;
-
- let (out, rem) = split_array_mut(output);
- hash4(
- input_ptrs,
- blocks,
- key,
- counter,
- increment_counter,
- flags,
- flags_start,
- flags_end,
- out,
- );
- if increment_counter.yes() {
- counter += DEGREE as u64;
- }
- inputs = &inputs[DEGREE..];
- output = rem;
- }
- for (&input, output) in inputs.iter().zip(array_chunks_mut(output)) {
- hash1(input, key, counter, flags, flags_start, flags_end, output);
- if increment_counter.yes() {
- counter += 1;
- }
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::super::platform;
- use super::super::test::*;
- use super::*;
-
- #[test]
- fn test_transpose() {
- if !platform::sse41_detected() {
- return;
- }
-
- #[target_feature(enable = "sse4.1")]
- unsafe fn transpose_wrapper(vecs: &mut [__m128i; DEGREE]) {
- transpose_vecs(vecs);
- }
-
- let mut matrix = [[0 as u32; DEGREE]; DEGREE];
- for i in 0..DEGREE {
- for j in 0..DEGREE {
- matrix[i][j] = (i * DEGREE + j) as u32;
- }
- }
-
- unsafe {
- let mut vecs: [__m128i; DEGREE] = core::mem::transmute(matrix);
- transpose_wrapper(&mut vecs);
- matrix = core::mem::transmute(vecs);
- }
-
- for i in 0..DEGREE {
- for j in 0..DEGREE {
- // Reversed indexes from above.
- assert_eq!(matrix[j][i], (i * DEGREE + j) as u32);
- }
- }
- }
-
- #[test]
- fn test_compress() {
- if !platform::sse41_detected() {
- return;
- }
- test_compress_fn(compress_in_place, compress_xof);
- }
-
- #[test]
- fn test_hash_many() {
- if !platform::sse41_detected() {
- return;
- }
- test_hash_many_fn(hash_many, hash_many);
- }
-}
+++ /dev/null
-use crate::blake3::reference_impl;
-use crate::rand::Pcg64;
-use crate::slice::array_chunks;
-use crate::FixedVec;
-
-use super::portable;
-use super::{CVBytes, CVWords, IncrementCounter, BLOCK_LEN, CHUNK_LEN, OUT_LEN};
-use core::usize;
-
-// Interesting input lengths to run tests on.
-pub const TEST_CASES: &[usize] = &[
- 0,
- 1,
- 2,
- 3,
- 4,
- 5,
- 6,
- 7,
- 8,
- BLOCK_LEN - 1,
- BLOCK_LEN,
- BLOCK_LEN + 1,
- 2 * BLOCK_LEN - 1,
- 2 * BLOCK_LEN,
- 2 * BLOCK_LEN + 1,
- CHUNK_LEN - 1,
- CHUNK_LEN,
- CHUNK_LEN + 1,
- 2 * CHUNK_LEN,
- 2 * CHUNK_LEN + 1,
- 3 * CHUNK_LEN,
- 3 * CHUNK_LEN + 1,
- 4 * CHUNK_LEN,
- 4 * CHUNK_LEN + 1,
- 5 * CHUNK_LEN,
- 5 * CHUNK_LEN + 1,
- 6 * CHUNK_LEN,
- 6 * CHUNK_LEN + 1,
- 7 * CHUNK_LEN,
- 7 * CHUNK_LEN + 1,
- 8 * CHUNK_LEN,
- 8 * CHUNK_LEN + 1,
- 16 * CHUNK_LEN, // AVX512's bandwidth
- 31 * CHUNK_LEN, // 16 + 8 + 4 + 2 + 1
- 100 * CHUNK_LEN, // subtrees larger than MAX_SIMD_DEGREE chunks
-];
-
-pub const TEST_CASES_MAX: usize = 100 * CHUNK_LEN;
-
-// There's a test to make sure these two are equal below.
-pub const TEST_KEY: CVBytes = *b"whats the Elvish word for friend";
-pub const TEST_KEY_WORDS: CVWords = [
- 1952540791, 1752440947, 1816469605, 1752394102, 1919907616, 1868963940, 1919295602, 1684956521,
-];
-
-// Paint the input with a repeating byte pattern. We use a cycle length of 251,
-// because that's the largets prime number less than 256. This makes it
-// unlikely to swapping any two adjacent input blocks or chunks will give the
-// same answer.
-pub fn paint_test_input(buf: &mut [u8]) {
- for (i, b) in buf.iter_mut().enumerate() {
- *b = (i % 251) as u8;
- }
-}
-
-type CompressInPlaceFn =
- unsafe fn(cv: &mut CVWords, block: &[u8; BLOCK_LEN], block_len: u8, counter: u64, flags: u8);
-
-type CompressXofFn = unsafe fn(
- cv: &CVWords,
- block: &[u8; BLOCK_LEN],
- block_len: u8,
- counter: u64,
- flags: u8,
-) -> [u8; 64];
-
-// A shared helper function for platform-specific tests.
-pub fn test_compress_fn(compress_in_place_fn: CompressInPlaceFn, compress_xof_fn: CompressXofFn) {
- let initial_state = TEST_KEY_WORDS;
- let block_len: u8 = 61;
- let mut block = [0; BLOCK_LEN];
- paint_test_input(&mut block[..block_len as usize]);
- // Use a counter with set bits in both 32-bit words.
- let counter = (5u64 << 32) + 6;
- let flags = super::CHUNK_END | super::ROOT | super::KEYED_HASH;
-
- let portable_out =
- portable::compress_xof(&initial_state, &block, block_len, counter as u64, flags);
-
- let mut test_state = initial_state;
- unsafe { compress_in_place_fn(&mut test_state, &block, block_len, counter as u64, flags) };
- let test_state_bytes = super::platform::le_bytes_from_words_32(&test_state);
- let test_xof =
- unsafe { compress_xof_fn(&initial_state, &block, block_len, counter as u64, flags) };
-
- assert_eq!(&portable_out[..32], &test_state_bytes[..]);
- assert_eq!(&portable_out[..], &test_xof[..]);
-}
-
-type HashManyFn<A> = unsafe fn(
- inputs: &[&A],
- key: &CVWords,
- counter: u64,
- increment_counter: IncrementCounter,
- flags: u8,
- flags_start: u8,
- flags_end: u8,
- out: &mut [u8],
-);
-
-// A shared helper function for platform-specific tests.
-pub fn test_hash_many_fn(
- hash_many_chunks_fn: HashManyFn<[u8; CHUNK_LEN]>,
- hash_many_parents_fn: HashManyFn<[u8; 2 * OUT_LEN]>,
-) {
- // Test a few different initial counter values.
- // - 0: The base case.
- // - u32::MAX: The low word of the counter overflows for all inputs except the first.
- // - i32::MAX: *No* overflow. But carry bugs in tricky SIMD code can screw this up, if you XOR
- // when you're supposed to ANDNOT...
- let initial_counters = [0, u32::MAX as u64, i32::MAX as u64];
- for counter in initial_counters {
- // 31 (16 + 8 + 4 + 2 + 1) inputs
- const NUM_INPUTS: usize = 31;
- let mut input_buf = [0; CHUNK_LEN * NUM_INPUTS];
- super::test::paint_test_input(&mut input_buf);
-
- // First hash chunks.
- let mut chunks = FixedVec::<&[u8; CHUNK_LEN], NUM_INPUTS>::new();
- for chunk in array_chunks(&input_buf).take(NUM_INPUTS) {
- chunks.push(chunk);
- }
- let mut portable_chunks_out = [0; NUM_INPUTS * OUT_LEN];
- portable::hash_many(
- &chunks,
- &TEST_KEY_WORDS,
- counter,
- IncrementCounter::Yes,
- super::KEYED_HASH,
- super::CHUNK_START,
- super::CHUNK_END,
- &mut portable_chunks_out,
- );
-
- let mut test_chunks_out = [0; NUM_INPUTS * OUT_LEN];
- unsafe {
- hash_many_chunks_fn(
- &chunks[..],
- &TEST_KEY_WORDS,
- counter,
- IncrementCounter::Yes,
- super::KEYED_HASH,
- super::CHUNK_START,
- super::CHUNK_END,
- &mut test_chunks_out,
- );
- }
- for n in 0..NUM_INPUTS {
- assert_eq!(
- &portable_chunks_out[n * OUT_LEN..][..OUT_LEN],
- &test_chunks_out[n * OUT_LEN..][..OUT_LEN]
- );
- }
-
- // Then hash parents.
- let mut parents = FixedVec::<&[u8; 2 * OUT_LEN], NUM_INPUTS>::new();
- for parent in array_chunks(&input_buf).take(NUM_INPUTS) {
- parents.push(parent);
- }
- let mut portable_parents_out = [0; NUM_INPUTS * OUT_LEN];
- portable::hash_many(
- &parents,
- &TEST_KEY_WORDS,
- counter,
- IncrementCounter::No,
- super::KEYED_HASH | super::PARENT,
- 0,
- 0,
- &mut portable_parents_out,
- );
-
- let mut test_parents_out = [0; NUM_INPUTS * OUT_LEN];
- unsafe {
- hash_many_parents_fn(
- &parents[..],
- &TEST_KEY_WORDS,
- counter,
- IncrementCounter::No,
- super::KEYED_HASH | super::PARENT,
- 0,
- 0,
- &mut test_parents_out,
- );
- }
- for n in 0..NUM_INPUTS {
- assert_eq!(
- &portable_parents_out[n * OUT_LEN..][..OUT_LEN],
- &test_parents_out[n * OUT_LEN..][..OUT_LEN]
- );
- }
- }
-}
-
-#[test]
-fn test_key_bytes_equal_key_words() {
- assert_eq!(
- TEST_KEY_WORDS,
- super::platform::words_from_le_bytes_32(&TEST_KEY),
- );
-}
-
-#[test]
-fn test_reference_impl_size() {
- // Because the Rust compiler optimizes struct layout, it's possible that
- // some future version of the compiler will produce a different size. If
- // that happens, we can either disable this test, or test for multiple
- // expected values. For now, the purpose of this test is to make sure we
- // notice if that happens.
- assert_eq!(1880, core::mem::size_of::<reference_impl::Hasher>());
-}
-
-#[test]
-fn test_counter_words() {
- let counter: u64 = (1 << 32) + 2;
- assert_eq!(super::counter_low(counter), 2);
- assert_eq!(super::counter_high(counter), 1);
-}
-
-#[test]
-fn test_largest_power_of_two_leq() {
- let input_output = &[
- // The zero case is nonsensical, but it does work.
- (0, 1),
- (1, 1),
- (2, 2),
- (3, 2),
- (4, 4),
- (5, 4),
- (6, 4),
- (7, 4),
- (8, 8),
- // the largest possible usize
- (usize::MAX, (usize::MAX >> 1) + 1),
- ];
- for &(input, output) in input_output {
- assert_eq!(
- output,
- super::largest_power_of_two_leq(input),
- "wrong output for n={}",
- input
- );
- }
-}
-
-#[test]
-fn test_left_len() {
- let input_output = &[
- (CHUNK_LEN + 1, CHUNK_LEN),
- (2 * CHUNK_LEN - 1, CHUNK_LEN),
- (2 * CHUNK_LEN, CHUNK_LEN),
- (2 * CHUNK_LEN + 1, 2 * CHUNK_LEN),
- (4 * CHUNK_LEN - 1, 2 * CHUNK_LEN),
- (4 * CHUNK_LEN, 2 * CHUNK_LEN),
- (4 * CHUNK_LEN + 1, 4 * CHUNK_LEN),
- ];
- for &(input, output) in input_output {
- assert_eq!(super::left_len(input), output);
- }
-}
-
-#[test]
-fn test_compare_reference_impl() {
- const OUT: usize = 303; // more than 64, not a multiple of 4
- let mut input_buf = [0; TEST_CASES_MAX];
- paint_test_input(&mut input_buf);
- for &case in TEST_CASES {
- let input = &input_buf[..case];
-
- // regular
- {
- let mut reference_hasher = reference_impl::Hasher::new();
- reference_hasher.update(input);
- let mut expected_out = [0; OUT];
- reference_hasher.finalize(&mut expected_out);
-
- // all at once
- let test_out = super::hash(input);
- let out: &[u8; 32] = &expected_out[0..32].try_into().unwrap();
- assert_eq!(test_out, *out);
- // incremental
- let mut hasher = super::Hasher::new();
- hasher.update(input);
- assert_eq!(hasher.finalize(), *&expected_out[0..32]);
- assert_eq!(hasher.finalize(), test_out);
- // xof
- let mut extended = [0; OUT];
- hasher.finalize_xof().fill(&mut extended);
- assert_eq!(extended, expected_out);
- }
-
- // keyed
- {
- let mut reference_hasher = reference_impl::Hasher::new_keyed(&TEST_KEY);
- reference_hasher.update(input);
- let mut expected_out = [0; OUT];
- reference_hasher.finalize(&mut expected_out);
-
- // all at once
- let test_out = super::keyed_hash(&TEST_KEY, input);
- assert_eq!(test_out, expected_out[0..32]);
- // incremental
- let mut hasher = super::Hasher::new_keyed(&TEST_KEY);
- hasher.update(input);
- assert_eq!(hasher.finalize(), expected_out[0..32]);
- assert_eq!(hasher.finalize(), test_out);
- // xof
- let mut extended = [0; OUT];
- hasher.finalize_xof().fill(&mut extended);
- assert_eq!(extended, expected_out);
- }
-
- // derive_key
- {
- let context = "BLAKE3 2019-12-27 16:13:59 example context (not the test vector one)";
- let mut reference_hasher = reference_impl::Hasher::new_derive_key(context);
- reference_hasher.update(input);
- let mut expected_out = [0; OUT];
- reference_hasher.finalize(&mut expected_out);
-
- // all at once
- let test_out = super::derive_key(context, input);
- assert_eq!(test_out, expected_out[..32]);
- // incremental
- let mut hasher = super::Hasher::new_derive_key(context);
- hasher.update(input);
- assert_eq!(hasher.finalize(), expected_out[0..32]);
- assert_eq!(hasher.finalize(), test_out[0..32]);
- // xof
- let mut extended = [0; OUT];
- hasher.finalize_xof().fill(&mut extended);
- assert_eq!(extended, expected_out);
- }
- }
-}
-
-fn reference_hash(input: &[u8]) -> super::Hash {
- let mut hasher = reference_impl::Hasher::new();
- hasher.update(input);
- let mut bytes = [0; 32];
- hasher.finalize(&mut bytes);
- bytes.into()
-}
-
-#[test]
-fn test_compare_update_multiple() {
- // Don't use all the long test cases here, since that's unnecessarily slow
- // in debug mode.
- let mut short_test_cases = TEST_CASES;
- while *short_test_cases.last().unwrap() > 4 * CHUNK_LEN {
- short_test_cases = &short_test_cases[..short_test_cases.len() - 1];
- }
- assert_eq!(*short_test_cases.last().unwrap(), 4 * CHUNK_LEN);
-
- let mut input_buf = [0; 2 * TEST_CASES_MAX];
- paint_test_input(&mut input_buf);
-
- for &first_update in short_test_cases {
- #[cfg(feature = "std")]
- dbg!(first_update);
- let first_input = &input_buf[..first_update];
- let mut test_hasher = super::Hasher::new();
- test_hasher.update(first_input);
-
- for &second_update in short_test_cases {
- #[cfg(feature = "std")]
- dbg!(second_update);
- let second_input = &input_buf[first_update..][..second_update];
- let total_input = &input_buf[..first_update + second_update];
-
- // Clone the hasher with first_update bytes already written, so
- // that the next iteration can reuse it.
- let mut test_hasher = test_hasher.clone();
- test_hasher.update(second_input);
- let expected = reference_hash(total_input);
- assert_eq!(expected, test_hasher.finalize());
- }
- }
-}
-
-#[test]
-fn test_fuzz_hasher() {
- const INPUT_MAX: usize = 4 * CHUNK_LEN;
- let mut input_buf = [0; 3 * INPUT_MAX];
- paint_test_input(&mut input_buf);
-
- // Don't do too many iterations in debug mode, to keep the tests under a
- // second or so. CI should run tests in release mode also. Provide an
- // environment variable for specifying a larger number of fuzz iterations.
- let num_tests = if cfg!(debug_assertions) { 100 } else { 10_000 };
-
- // Use a fixed RNG seed for reproducibility.
- let mut rng = Pcg64::new();
- for _num_test in 0..num_tests {
- #[cfg(feature = "std")]
- dbg!(_num_test);
- let mut hasher = super::Hasher::new();
- let mut total_input = 0;
- // For each test, write 3 inputs of random length.
- for _ in 0..3 {
- let input_len = rng.next_bound_u64((INPUT_MAX + 1) as u64) as usize;
- let input = &input_buf[total_input..][..input_len];
- hasher.update(input);
- total_input += input_len;
- }
- let expected = reference_hash(&input_buf[..total_input]);
- assert_eq!(expected, hasher.finalize());
- }
-}
-
-#[test]
-fn test_xof_seek() {
- let mut out = [0; 533];
- let mut hasher = super::Hasher::new();
- hasher.update(b"foo");
- hasher.finalize_xof().fill(&mut out);
- assert_eq!(hasher.finalize().as_bytes(), &out[0..32]);
-
- let mut reader = hasher.finalize_xof();
- reader.set_position(303);
- let mut out2 = [0; 102];
- reader.fill(&mut out2);
- assert_eq!(&out[303..][..102], &out2[..]);
-}
-
-#[test]
-fn test_msg_schdule_permutation() {
- let permutation = [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8];
-
- let mut generated = [[0; 16]; 7];
- generated[0] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];
-
- for round in 1..7 {
- for i in 0..16 {
- generated[round][i] = generated[round - 1][permutation[i]];
- }
- }
-
- assert_eq!(generated, super::MSG_SCHEDULE);
-}
-
-#[test]
-fn test_reset() {
- let mut hasher = super::Hasher::new();
- hasher.update(&[42; 3 * CHUNK_LEN + 7]);
- hasher.reset();
- hasher.update(&[42; CHUNK_LEN + 3]);
- assert_eq!(hasher.finalize(), super::hash(&[42; CHUNK_LEN + 3]));
-
- let key = &[99; super::KEY_LEN];
- let mut keyed_hasher = super::Hasher::new_keyed(key);
- keyed_hasher.update(&[42; 3 * CHUNK_LEN + 7]);
- keyed_hasher.reset();
- keyed_hasher.update(&[42; CHUNK_LEN + 3]);
- assert_eq!(
- keyed_hasher.finalize(),
- super::keyed_hash(key, &[42; CHUNK_LEN + 3]),
- );
-
- let context = "BLAKE3 2020-02-12 10:20:58 reset test";
- let mut kdf = super::Hasher::new_derive_key(context);
- kdf.update(&[42; 3 * CHUNK_LEN + 7]);
- kdf.reset();
- kdf.update(&[42; CHUNK_LEN + 3]);
- let expected = super::derive_key(context, &[42; CHUNK_LEN + 3]);
- assert_eq!(kdf.finalize(), expected);
-}
-
-// This test is a mimized failure case for the Windows SSE2 bug described in
-// https://github.com/BLAKE3-team/BLAKE3/issues/206.
-//
-// Before that issue was fixed, this test would fail on Windows in the following configuration:
-//
-// cargo test --features=no_avx512,no_avx2,no_sse41 --release
-//
-// Bugs like this one (stomping on a caller's register) are very sensitive to the details of
-// surrounding code, so it's not especially likely that this test will catch another bug (or even
-// the same bug) in the future. Still, there's no harm in keeping it.
-#[test]
-fn test_issue_206_windows_sse2() {
- // This stupid loop has to be here to trigger the bug. I don't know why.
- for _ in &[0] {
- // The length 65 (two blocks) is significant. It doesn't repro with 64 (one block). It also
- // doesn't repro with an all-zero input.
- let input = &[0xff; 65];
- let expected_hash = [
- 183, 235, 50, 217, 156, 24, 190, 219, 2, 216, 176, 255, 224, 53, 28, 95, 57, 148, 179,
- 245, 162, 90, 37, 121, 0, 142, 219, 62, 234, 204, 225, 161,
- ];
-
- // This throwaway call has to be here to trigger the bug.
- super::Hasher::new().update(input);
-
- // This assert fails when the bug is triggered.
- assert_eq!(super::Hasher::new().update(input).finalize(), expected_hash);
- }
-}
mod arena;
mod bitset;
-pub mod blake3;
mod fixed_vec;
mod libc;
pub mod manual_arc;